Escherichia coli mutant trpA34 has an Asp----Asn change at active site residue 60 of the tryptophan synthetase alpha chain. 1990

L Shirvanee, and V Horn, and C Yanofsky
Department of Biological Sciences, Stanford University, California 94305-5020.

Asp-60 is believed to be a catalytically essential residue of the tryptophan synthetase alpha chain of Escherichia coli (Nagata, S., Hyde, C.C., and Miles, E.W. (1989) J. Biol. Chem. 264, 6288-6296). Surprisingly, mutations altering Asp-60 were not observed in the many trpA missense mutants characterized in the 1960s. However, there was one genetic class of trpA missense mutants, represented by trpA34, for which protein structure analyses failed to detect an amino acid substitution. DNA sequence analyses have now shown that the trpA34 mutation was in codon 60 and that it resulted in replacement of Asp-60 by Asn. This finding provides additional support for the conclusion that the tryptophan synthetase alpha chain contains only a small number of absolutely essential residues.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001216 Asparagine A non-essential amino acid that is involved in the metabolic control of cell functions in nerve and brain tissue. It is biosynthesized from ASPARTIC ACID and AMMONIA by asparagine synthetase. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed) L-Asparagine
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

L Shirvanee, and V Horn, and C Yanofsky
April 1993, The Journal of biological chemistry,
L Shirvanee, and V Horn, and C Yanofsky
October 1978, Molecular & general genetics : MGG,
L Shirvanee, and V Horn, and C Yanofsky
November 1994, Protein science : a publication of the Protein Society,
L Shirvanee, and V Horn, and C Yanofsky
July 1974, Journal of molecular biology,
L Shirvanee, and V Horn, and C Yanofsky
June 1996, The Journal of biological chemistry,
L Shirvanee, and V Horn, and C Yanofsky
February 1965, The Journal of biological chemistry,
L Shirvanee, and V Horn, and C Yanofsky
July 1981, Biochimica et biophysica acta,
L Shirvanee, and V Horn, and C Yanofsky
January 1989, The Journal of biological chemistry,
L Shirvanee, and V Horn, and C Yanofsky
August 1962, Proceedings of the National Academy of Sciences of the United States of America,
L Shirvanee, and V Horn, and C Yanofsky
November 1992, The Journal of biological chemistry,
Copied contents to your clipboard!