Nonprotein amino acid furanomycin, unlike isoleucine in chemical structure, is charged to isoleucine tRNA by isoleucyl-tRNA synthetase and incorporated into protein. 1990

T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Japan.

Nonprotein amino acid furanomycin was found to bind with Escherichia coli isoleucyl-tRNA synthetase (IleRS) almost as tightly as the substrate L-isoleucine. The conformation of furanomycin bound to the enzyme was determined by NMR analyses including the transferred nuclear Overhauser effect method. The conformation of IleRS-bound furanomycin was similar to that of L-isoleucine, although the chemical structure of furanomycin is unlike that of L-isoleucine. By E. coli IleRS, E. coli tRNAIle was charged with furanomycin as efficiently as with L-isoleucine. Furthermore, furanomycyl-tRNAIle was bound to polypeptide chain elongation factor Tu as tightly as isoleucyl-tRNAIle. Furanomycin was found to be incorporated into beta-lactamase precursor by in vitro protein biosynthesis. A newly designed amino acid will probably be incorporated into proteins, provided that the new amino acid takes a similar conformation as a protein-constituting amino acid in the active site of an aminoacyl-tRNA synthetase.

UI MeSH Term Description Entries
D007532 Isoleucine An essential branched-chain aliphatic amino acid found in many proteins. It is an isomer of LEUCINE. It is important in hemoglobin synthesis and regulation of blood sugar and energy levels. Alloisoleucine,Isoleucine, L-Isomer,L-Isoleucine,Isoleucine, L Isomer,L-Isomer Isoleucine
D007533 Isoleucine-tRNA Ligase An enzyme that activates isoleucine with its specific transfer RNA. EC 6.1.1.5. Isoleucyl T RNA Synthetase,Isoleucyl- tRNA Synthetase ILS1,Isoleucyl-tRNA Synthetase 1,Isoleucyl-tRNA Synthetase ILES1,Ile-tRNA Ligase,Isoleucyl-tRNA Synthetase,1, Isoleucyl-tRNA Synthetase,ILES1, Isoleucyl-tRNA Synthetase,Ile tRNA Ligase,Isoleucine tRNA Ligase,Isoleucyl tRNA Synthetase,Isoleucyl tRNA Synthetase 1,Isoleucyl tRNA Synthetase ILES1,Isoleucyl tRNA Synthetase ILS1,Ligase, Ile-tRNA,Ligase, Isoleucine-tRNA,Synthetase 1, Isoleucyl-tRNA,Synthetase ILES1, Isoleucyl-tRNA,Synthetase, Isoleucyl-tRNA
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
May 1987, The Journal of biological chemistry,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
October 1987, Biochemistry,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
March 1987, Biological chemistry Hoppe-Seyler,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
March 1977, Biochemistry,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
July 1977, Nucleic acids research,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
April 1989, European journal of biochemistry,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
August 2021, Journal of autoimmunity,
T Kohno, and D Kohda, and M Haruki, and S Yokoyama, and T Miyazawa
November 2002, European journal of biochemistry,
Copied contents to your clipboard!