Regulation of chorismate mutase in Saccharomyces cerevisiae. 1990

J F Brown, and I W Dawes
Dept. of Microbiology, University of Edinburgh, UK.

The Saccharomyces cerevisiae ARO7 gene was cloned by screening a wild-type gene bank for complementation of an aro7 auxotrophic mutant. In vitro mutagenesis of the isolated plasmid (pJFB1) gave several transformants resistant to levels of the phenylalanine analogue 2-thienylalanine inhibitory to the wild-type transformant. Chorismate mutase assays indicated that two of the mutants (J14-26IV6 and J14-26IV9) were resistant to feedback inhibition by tyrosine displayed by wild-type strains. Analysis of the effect of other aromatic amino acids on chorismate mutase activity showed that tryptophan counteracted this inhibition. Analysis of the effect of tyrosine in the growth medium on enzyme activity indicated that the wild-type ARO7 gene was repressed by tyrosine, a phenomenon not previously reported. Two of the 2-thienylalanine resistant mutants (J14-26IV3 and J14-26IV9) appeared to be resistant to this repression. Transcriptional analysis confirmed that the level of ARO7 transcript decreased with increasing tyrosine concentration. In stain J14-26IV9 the ARO7 transcript level was not affected. J14-26IV9, therefore, appears to be a double mutant, resistant to both feedback inhibition and repression by tyrosine.

UI MeSH Term Description Entries
D007535 Isomerases A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5. Isomerase
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010649 Phenylalanine An essential aromatic amino acid that is a precursor of MELANIN; DOPAMINE; noradrenalin (NOREPINEPHRINE), and THYROXINE. Endorphenyl,L-Phenylalanine,Phenylalanine, L-Isomer,L-Isomer Phenylalanine,Phenylalanine, L Isomer
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002826 Chorismate Mutase An isomerase that catalyzes the conversion of chorismic acid to prephenic acid. EC 5.4.99.5. Chorismate Pyruvatemutase,Mutase, Chorismate,Pyruvatemutase, Chorismate
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D005809 Genes, Regulator Genes which regulate or circumscribe the activity of other genes; specifically, genes which code for PROTEINS or RNAs which have GENE EXPRESSION REGULATION functions. Gene, Regulator,Regulator Gene,Regulator Genes,Regulatory Genes,Gene, Regulatory,Genes, Regulatory,Regulatory Gene
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

J F Brown, and I W Dawes
July 2003, Bioorganic & medicinal chemistry,
J F Brown, and I W Dawes
October 1970, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J F Brown, and I W Dawes
April 1970, Hoppe-Seyler's Zeitschrift fur physiologische Chemie,
J F Brown, and I W Dawes
November 1995, Proceedings of the National Academy of Sciences of the United States of America,
J F Brown, and I W Dawes
December 2000, Proceedings of the National Academy of Sciences of the United States of America,
J F Brown, and I W Dawes
December 1996, Molecular microbiology,
J F Brown, and I W Dawes
January 1987, Methods in enzymology,
J F Brown, and I W Dawes
January 2004, The Journal of biological chemistry,
Copied contents to your clipboard!