Cloning and characterization of the HpaII methylase gene. 1990

C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
New England Biolabs, Inc., Beverly, MA 01915.

The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D006190 Haemophilus A genus of PASTEURELLACEAE that consists of several species occurring in animals and humans. Its organisms are described as gram-negative, facultatively anaerobic, coccobacillus or rod-shaped, and nonmotile. Hemophilus
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
May 1988, Nucleic acids research,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
March 1984, Journal of bacteriology,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
December 1982, Gene,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
August 1980, Gene,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
February 1993, Biochemical Society transactions,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
January 1979, Doklady Akademii nauk SSSR,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
February 1989, Nucleic acids research,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
March 1990, Nucleic acids research,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
February 1983, Nucleic acids research,
C O Card, and G G Wilson, and K Weule, and J Hasapes, and A Kiss, and R J Roberts
January 1980, Molecular & general genetics : MGG,
Copied contents to your clipboard!