Cloning and characterization of nuclear genes for two mitochondrial ribosomal proteins in Saccharomyces cerevisiae. 1990

M Kitakawa, and L Grohmann, and H R Graack, and K Isono
Department of Biology, Faculty of Science, Kobe University, Japan.

The genes for two large subunit proteins, YmL8 and YmL20, of the mitochondrial ribosome of Saccharomyces cerevisiae were cloned by hybridization with synthetic oligonucleotide mixtures corresponding to their N-terminal amino acid sequences. They were termed MRP-L8 and MRP-L20, respectively, and their nucleotide sequences were determined using a DNA sequencer. The MRP-L8 gene was found to encode a 26.8-kDa protein whose deduced amino acid sequence has a high degree of similarity to ribosomal protein L17 of Escherichia coli. The gene MRP-L20 was found to encode a 22.3-kDa protein with a presequence consisting of 18 amino acid residues. By Southern blot hybridization to the yeast chromosomes separated by field-inversion gel electrophoresis, the MRP-L8 and MRP-L20 genes were located on chromosomes X and XI, respectively. Gene disruption experiments indicate that their products, YmL8 and YmL20 proteins, are essential for the mitochondrial function and the absence of these proteins causes instability of the mitochondrial DNA.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker

Related Publications

M Kitakawa, and L Grohmann, and H R Graack, and K Isono
October 1989, Molecular & general genetics : MGG,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
December 1995, Journal of bacteriology,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
March 1991, Molecular & general genetics : MGG,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
October 1981, The Journal of biological chemistry,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
June 1995, Current genetics,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
September 1977, Molecular & general genetics : MGG,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
August 2018, Scientific reports,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
February 1986, Molecular and cellular biology,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
September 1988, Genetika,
M Kitakawa, and L Grohmann, and H R Graack, and K Isono
June 1999, FEBS letters,
Copied contents to your clipboard!