Asymmetry in sexual pheromones is not required for ascomycete mating. 2011

Joana Gonçalves-Sá, and Andrew Murray
Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.

BACKGROUND We investigated the determinants of sexual identity in the budding yeast Saccharomyces cerevisiae. The higher fungi are divided into the ascomycetes and the basidiomycetes. Most ascomycetes have two mating types: one (called α in yeasts and MAT1-1 in filamentous fungi) produces a small, unmodified, peptide pheromone, and the other (a in yeasts and MAT1-2 in filamentous fungi) produces a peptide pheromone conjugated to a C-terminal farnesyl group that makes it very hydrophobic. In the basidiomycetes, all pheromones are lipid-modified, and this difference is a distinguishing feature between the phyla. We asked whether the asymmetry in pheromone modification is required for successful mating in ascomycetes. RESULTS We cloned receptor and pheromone genes from a filamentous ascomycete and a basidiomycete and expressed these in the budding yeast, Saccharomyces cerevisiae, to generate novel, alternative mating pairs. We find that two yeast cells can mate even when both cells secrete a-like or α-like peptides. Importantly, this is true regardless of whether the cells express the a- or α-mating-type loci, which control the expression of other, sex-specific genes, in addition to the pheromones and pheromone receptors. CONCLUSIONS We demonstrate that the asymmetric pheromone modification is not required for successful mating of ascomycete fungi and confirm that, in budding yeast, the primary determinants of mating are the specificity of the receptors and their corresponding pheromones.

UI MeSH Term Description Entries
D010675 Pheromones Chemical substances, excreted by an organism into the environment, that elicit behavioral or physiological responses from other organisms of the same species. Perception of these chemical signals may be olfactory or by contact. Allelochemical,Allelochemicals,Allomone,Allomones,Ectohormones,Kairomone,Kairomones,Pheromone,Semiochemical,Semiochemicals,Synomones
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D001203 Ascomycota A phylum of fungi which have cross-walls or septa in the mycelium. The perfect state is characterized by the formation of a saclike cell (ascus) containing ascospores. Most pathogenic fungi with a known perfect state belong to this phylum. Ascomycetes,Cochliobolus,Sclerotinia,Ascomycete,Ascomycotas,Sclerotinias
D012441 Saccharomyces cerevisiae A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement. Baker's Yeast,Brewer's Yeast,Candida robusta,S. cerevisiae,Saccharomyces capensis,Saccharomyces italicus,Saccharomyces oviformis,Saccharomyces uvarum var. melibiosus,Yeast, Baker's,Yeast, Brewer's,Baker Yeast,S cerevisiae,Baker's Yeasts,Yeast, Baker
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015966 Gene Expression Regulation, Fungal Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi. Fungal Gene Expression Regulation,Regulation of Gene Expression, Fungal,Regulation, Gene Expression, Fungal
D043563 Receptors, Pheromone Cell surface receptors that respond to PHEROMONES. Pheromone Receptor,Pheromone Receptors,Receptor, Pheromone
D049770 Genes, Mating Type, Fungal Fungal genes that mostly encode TRANSCRIPTION FACTORS. In some FUNGI they also encode PHEROMONES and PHEROMONE RECEPTORS. The transcription factors control expression of specific proteins that give a cell its mating identity. Opposite mating type identities are required for mating. Fungal Mating-Type Genes,Genes, Fungal Mating Type,Mating Type, Fungal,Fungal Mating Type,Fungal Mating Type Genes,Fungal Mating Types,Fungal Mating-Type Gene,Gene, Fungal Mating-Type,Genes, Fungal Mating-Type,Mating Types, Fungal,Mating-Type Gene, Fungal,Mating-Type Genes, Fungal,Type, Fungal Mating,Types, Fungal Mating
D029701 Saccharomyces cerevisiae Proteins Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes. Baker's Yeast Proteins,S cerevisiae Proteins

Related Publications

Joana Gonçalves-Sá, and Andrew Murray
July 2011, Molecular biology and evolution,
Joana Gonçalves-Sá, and Andrew Murray
October 1993, The Plant cell,
Joana Gonçalves-Sá, and Andrew Murray
November 1995, The Journal of cell biology,
Joana Gonçalves-Sá, and Andrew Murray
January 2009, Eukaryotic cell,
Joana Gonçalves-Sá, and Andrew Murray
January 1978, The ... Symposium. Society for Developmental Biology. Symposium,
Joana Gonçalves-Sá, and Andrew Murray
June 2014, Journal of evolutionary biology,
Joana Gonçalves-Sá, and Andrew Murray
January 2023, Frontiers in behavioral neuroscience,
Joana Gonçalves-Sá, and Andrew Murray
August 2009, Fungal genetics and biology : FG & B,
Joana Gonçalves-Sá, and Andrew Murray
January 2018, Journal of chemical ecology,
Copied contents to your clipboard!