Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. 2011

Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
NIH, National Cancer Institute, Surgery Branch, Bethesda, Maryland 20892, USA. Maria_Parkhurst@nih.gov

OBJECTIVE Adoptive transfer of tumor-infiltrating lymphocytes (TIL) can mediate regression of metastatic melanoma. However, many patients with cancer are ineligible for such treatment because their TIL do not expand sufficiently or because their tumors have lost expression of antigens and/or MHC molecules. Natural killer (NK) cells are large granular lymphocytes that lyse tumor cells in a non-MHC-restricted manner. Therefore, we initiated in a clinical trial to evaluate the efficacy of adoptively transferred autologous NK cells to treat patients with cancers who were ineligible for treatment with TIL. METHODS Patients with metastatic melanoma or renal cell carcinoma were treated with adoptively transferred in vitro activated autologous NK cells after the patients received a lymphodepleting but nonmyeloablative chemotherapy regimen. Clinical responses and persistence of the adoptively transferred cells were evaluated. RESULTS Eight patients were treated with an average of 4.7 × 10(10) (± 2.1 × 10(10)) NK cells. The infused cells exhibited high levels of lytic activity in vitro. Although no clinical responses were observed, the adoptively transferred NK cells seemed to persist in the peripheral circulation of patients for at least one week posttransfer and, in some patients, for several months. However, the persistent NK cells in the circulation expressed significantly lower levels of the key activating receptor NKG2D and could not lyse tumor cell targets in vitro unless reactivated with IL-2. CONCLUSIONS The persistent NK cells could mediate antibody-dependent cell-mediated cytotoxicity without cytokine reactivation in vitro, which suggests that coupling adoptive NK cell transfer with monoclonal antibody administration deserves evaluation.

UI MeSH Term Description Entries
D007694 Killer Cells, Natural Bone marrow-derived lymphocytes that possess cytotoxic properties, classically directed against transformed and virus-infected cells. Unlike T CELLS; and B CELLS; NK CELLS are not antigen specific. The cytotoxicity of natural killer cells is determined by the collective signaling of an array of inhibitory and stimulatory CELL SURFACE RECEPTORS. A subset of T-LYMPHOCYTES referred to as NATURAL KILLER T CELLS shares some of the properties of this cell type. NK Cells,Natural Killer Cells,Cell, NK,Cell, Natural Killer,Cells, NK,Cells, Natural Killer,Killer Cell, Natural,NK Cell,Natural Killer Cell
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D002292 Carcinoma, Renal Cell A heterogeneous group of sporadic or hereditary carcinoma derived from cells of the KIDNEYS. There are several subtypes including the clear cells, the papillary, the chromophobe, the collecting duct, the spindle cells (sarcomatoid), or mixed cell-type carcinoma. Adenocarcinoma, Renal Cell,Carcinoma, Hypernephroid,Grawitz Tumor,Hypernephroma,Renal Carcinoma,Adenocarcinoma Of Kidney,Adenocarcinoma, Renal,Chromophil Renal Cell Carcinoma,Chromophobe Renal Cell Carcinoma,Clear Cell Renal Carcinoma,Clear Cell Renal Cell Carcinoma,Collecting Duct Carcinoma,Collecting Duct Carcinoma (Kidney),Collecting Duct Carcinoma of the Kidney,Nephroid Carcinoma,Papillary Renal Cell Carcinoma,Renal Cell Cancer,Renal Cell Carcinoma,Renal Cell Carcinoma, Papillary,Renal Collecting Duct Carcinoma,Sarcomatoid Renal Cell Carcinoma,Adenocarcinoma Of Kidneys,Adenocarcinomas, Renal Cell,Cancer, Renal Cell,Carcinoma, Collecting Duct,Carcinoma, Collecting Duct (Kidney),Carcinoma, Nephroid,Carcinoma, Renal,Carcinomas, Collecting Duct,Carcinomas, Collecting Duct (Kidney),Carcinomas, Renal Cell,Collecting Duct Carcinomas,Collecting Duct Carcinomas (Kidney),Hypernephroid Carcinoma,Hypernephroid Carcinomas,Hypernephromas,Kidney, Adenocarcinoma Of,Nephroid Carcinomas,Renal Adenocarcinoma,Renal Adenocarcinomas,Renal Carcinomas,Renal Cell Adenocarcinoma,Renal Cell Adenocarcinomas,Renal Cell Cancers,Renal Cell Carcinomas,Tumor, Grawitz
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
April 2017, Clinical immunology (Orlando, Fla.),
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
July 2021, Cytotherapy,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
January 1993, Natural immunity,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
January 1989, Journal of cancer research and clinical oncology,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
March 2018, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
January 1985, The Journal of experimental medicine,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
November 2021, The oncologist,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
June 2019, Stem cells and development,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
January 2016, Critical reviews in immunology,
Maria R Parkhurst, and John P Riley, and Mark E Dudley, and Steven A Rosenberg
October 2002, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!