Neuronal pathways in the guinea-pig lumbar sympathetic ganglia as revealed by immunohistochemistry. 1990

C Heym, and R Webber, and M Horn, and W Kummer
Institut für Anatomie und Zellbiologie, Universität Heidelberg, FRG.

Tyrosine hydroxylase (TH)- and peptide-immunoreactivity of postganglionic neurons and of nerve fibres in guinea pig lumbar paravertebral sympathetic ganglia 2-4 after transection of the communicating rami and the visceral branches, respectively, were investigated by single- and double-labelling techniques. Six subpopulations of postganglionic neurons were discriminated immunohistochemically: two cell types, which were immunoreactive to only one of the applied antisera - TH, and vasoactive intestinal polypeptide (VIP); and four cell types in which immunoreactivity was colocalized - TH/neuropeptide Y (NPY), NPY/VIP, dynorphin/alpha-neoendorphin and dynorphin (alpha-neoendorphin)/NPY. Small intensely fluorescent (SIF) cells dependent on their location exhibited differential immunobehaviour to NPY-/dynorphin-(alpha-neoendorphin-) and TH-antisera. Immunoreactivity to substance P (SP), calcitonin gene-related peptide (CGRP), met-enkephalin-arg-phe (MEAP) and leu-enkephalin was present in nerve fibres but not in postganglionic neurons with frequent colocalization of SP/CGRP- and MEAP/leu-enkephalin- and, sometimes leu-enkephalin/SP- and dynorphin/SP-immunoreactivity. TH-immunoreactive intraganglionic nerve fibres were numerically more increased after cutting the visceral branches, than after transection of the communicating rami. Vice versa, NPY-, VIP-, dynorphin- and alpha-neoendorphin-immunoreactive nerve fibres were particularly increased in number after cutting the communicating rami. Many but not all of the nerve fibres exhibited colocalization of two of these peptides. SP-, CGRP-, and enkephalin-immunoreactive nerve fibres were not visibly affected by cutting the visceral branches but virtually disappeared after lesioning the communicating rami.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008161 Lumbosacral Region Region of the back including the LUMBAR VERTEBRAE, SACRUM, and nearby structures. Lumbar Region,Lumbar Regions,Lumbosacral Regions,Region, Lumbar,Region, Lumbosacral,Regions, Lumbar,Regions, Lumbosacral
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D004311 Double-Blind Method A method of studying a drug or procedure in which both the subjects and investigators are kept unaware of who is actually getting which specific treatment. Double-Masked Study,Double-Blind Study,Double-Masked Method,Double Blind Method,Double Blind Study,Double Masked Method,Double Masked Study,Double-Blind Methods,Double-Blind Studies,Double-Masked Methods,Double-Masked Studies,Method, Double-Blind,Method, Double-Masked,Methods, Double-Blind,Methods, Double-Masked,Studies, Double-Blind,Studies, Double-Masked,Study, Double-Blind,Study, Double-Masked
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Heym, and R Webber, and M Horn, and W Kummer
January 1951, Anatomischer Anzeiger,
C Heym, and R Webber, and M Horn, and W Kummer
October 1997, Cell and tissue research,
C Heym, and R Webber, and M Horn, and W Kummer
January 1958, Comptes rendus des seances de la Societe de biologie et de ses filiales,
C Heym, and R Webber, and M Horn, and W Kummer
September 1997, Neuroscience letters,
C Heym, and R Webber, and M Horn, and W Kummer
December 1986, Journal of the autonomic nervous system,
C Heym, and R Webber, and M Horn, and W Kummer
January 1990, Advances in oto-rhino-laryngology,
C Heym, and R Webber, and M Horn, and W Kummer
June 1984, Journal of neurocytology,
C Heym, and R Webber, and M Horn, and W Kummer
June 1994, The American journal of physiology,
C Heym, and R Webber, and M Horn, and W Kummer
April 1987, Journal of submicroscopic cytology,
Copied contents to your clipboard!