ATP stimulates the hydrolysis of phosphatidylethanolamine in NIH 3T3 cells. Potentiating effects of guanosine triphosphates and sphingosine. 1990

Z Kiss, and W B Anderson
Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892.

Recently, phospholipase D-mediated hydrolysis of phosphatidylethanolamine (PtdEtn) was shown to be stimulated by activators of protein kinase C (Kiss, Z., and Anderson, W. B. (1989) J. Biol. Chem. 264, 1483-1487), suggesting that PtdEtn metabolism may play a role in signal transduction. Here we have studied the possible regulation of PtdEtn hydrolysis by adenine and guanine nucleotides, as well as by sphingosine, both in membranes isolated from [14C]ethanolamine- or [32P]PtdEtn-prelabeled NIH 3T3 cells and in intact cells. In isolated membranes both ATP and ADP stimulated the hydrolysis of PtdEtn. Both nucleotides had maximal (approximately 2-fold) effects at about 0.5 mM concentration. The main water-soluble product of [14C]PtdEtn hydrolysis was [14C]ethanolamine, while in [32P] PtdEtn-prelabeled membranes the nucleotides stimulated the formation of [32P]phosphatidic acid, suggesting the involvement of a phospholipase D-type enzyme. The hydrolysis-resistant analogs of GTP, such as guanosine 5'-3-O-(thio)triphosphate and guanyl-5'-yl imidodiphosphate, greatly potentiated the stimulatory effects of ATP and ADP on PtdEtn hydrolysis. On the other hand, the nonphosphorylating analogs of ATP, adenyl-5'-yl beta,gamma-imidodiphosphate and beta,gamma-methyl-eneadenosine 5'-triphosphate, failed to stimulate PtdEtn hydrolysis both in the absence and presence of guanosine triphosphates. Sphingosine, while exhibiting no effect alone, had a relatively modest (1.2-1.3-fold) potentiating effect on ATP-stimulated PtdEtn hydrolysis in isolated membranes. The effect of sphingosine was mimicked by threo- and erythrosphinganines, while N-acetylsphingosine was without effect. In studies with [14C]ethanolamine-prelabeled intact NIH 3T3 cells, externally added ATP did not stimulate PtdEtn hydrolysis. In contrast, sphingosine and sphinganines had much greater stimulatory effects on PtdEtn hydrolysis in intact cells than with isolated membranes. These data indicate that PtdEtn hydrolysis may be regulated by adenine and guanine nucleotides in addition to, or in cooperation with, the activators of protein kinase C, and that sphingosine may be an additional regulator of PtdEtn hydrolysis.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006160 Guanosine Triphosphate Guanosine 5'-(tetrahydrogen triphosphate). A guanine nucleotide containing three phosphate groups esterified to the sugar moiety. GTP,Triphosphate, Guanosine
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Z Kiss, and W B Anderson
September 1993, Biochemical and biophysical research communications,
Z Kiss, and W B Anderson
May 1989, Molecular and cellular biology,
Copied contents to your clipboard!