Clinical pharmacokinetics of imipramine and desipramine. 1990

F R Sallee, and B G Pollock
Department of Psychiatry, Medical University of South Carolina, Charleston.

The pharmacokinetics of imipramine and desipramine have been extensively investigated with recent studies designed to understand sources of intersubject variability and to study discrete clinical populations rather than healthy volunteers. Sources of intersubject variability in pharmacokinetics are both genetic (oxidative phenotype) and environmental. Oxidative phenotype has an important impact on first-pass metabolism. In individuals with poor metabolism, systemic availability for imipramine is increased. Intrinsic clearance of desipramine is reduced 4-fold in individuals with poor metabolism. Recent pharmacokinetic studies in diverse patient populations such as the depressed elderly, children and alcoholics have revealed decreased clearance of imipramine in the elderly and increased clearance of both imipramine and desipramine in chronic alcoholics. In at least a third of the population, nonlinear pharmacokinetics of desipramine may be observed at steady-state plasma concentrations above 150 micrograms/L. These nonlinear changes in desipramine pharmacokinetics are not associated with age or sex, but are associated with higher desipramine 2-hydroxydesipramine concentration ratios. Hydroxylated metabolites of imipramine and desipramine may possess both antidepressants and cardiotoxic activity but their formation is rate limited and plasma concentrations tend to follow the parent compound with little accumulation. The potent cardiovascular effects of the hydroxymetabolites may be particularly relevant for the elderly and in acute overdose.

UI MeSH Term Description Entries
D007099 Imipramine The prototypical tricyclic antidepressant. It has been used in major depression, dysthymia, bipolar depression, attention-deficit disorders, agoraphobia, and panic disorders. It has less sedative effect than some other members of this therapeutic group. Imidobenzyle,Imizin,4,4'-Methylenebis(3-hydroxy-2-naphthoic acid)-3-(10,11-dihydro-5H-dibenzo(b,f)azepin-5-yl)-N,N-dimethyl-1-propanamine (1:2),Imipramine Hydrochloride,Imipramine Monohydrochloride,Imipramine Pamoate,Janimine,Melipramine,Norchlorimipramine,Pryleugan,Tofranil
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D003891 Desipramine A tricyclic dibenzazepine compound that potentiates neurotransmission. Desipramine selectively blocks reuptake of norepinephrine from the neural synapse, and also appears to impair serotonin transport. This compound also possesses minor anticholinergic activity, through its affinity to muscarinic receptors. Desmethylimipramine,Apo-Desipramine,Demethylimipramine,Desipramine Hydrochloride,Norpramin,Novo-Desipramine,Nu-Desipramine,PMS-Desipramine,Pertofran,Pertofrane,Pertrofran,Petylyl,Ratio-Desipramine,Apo Desipramine,Hydrochloride, Desipramine,Novo Desipramine,Nu Desipramine,PMS Desipramine,Ratio Desipramine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001682 Biological Availability The extent to which the active ingredient of a drug dosage form becomes available at the site of drug action or in a biological medium believed to reflect accessibility to a site of action. Availability Equivalency,Bioavailability,Physiologic Availability,Availability, Biologic,Availability, Biological,Availability, Physiologic,Biologic Availability,Availabilities, Biologic,Availabilities, Biological,Availabilities, Physiologic,Availability Equivalencies,Bioavailabilities,Biologic Availabilities,Biological Availabilities,Equivalencies, Availability,Equivalency, Availability,Physiologic Availabilities
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

F R Sallee, and B G Pollock
May 1988, Clinical pharmacology and therapeutics,
F R Sallee, and B G Pollock
August 1997, Clinical pharmacology and therapeutics,
F R Sallee, and B G Pollock
October 1967, Wiener medizinische Wochenschrift (1946),
F R Sallee, and B G Pollock
March 1997, British journal of clinical pharmacology,
F R Sallee, and B G Pollock
June 1993, Therapeutic drug monitoring,
F R Sallee, and B G Pollock
November 1964, The American journal of psychiatry,
F R Sallee, and B G Pollock
January 1991, Journal of the American Academy of Child and Adolescent Psychiatry,
F R Sallee, and B G Pollock
November 1974, Revista espanola de anestesiologia y reanimacion,
Copied contents to your clipboard!