Mechanisms responsible for the cardiotoxic effects of cocaine. 1990

G E Billman
Department of Physiology, Ohio State University, Columbus 43210.

Cocaine can induce lethal cardiovascular events, including myocardial infarction and ventricular fibrillation. The mechanisms responsible for these cardiotoxic effects of cocaine remain largely to be determined. Cocaine has both sympathomimetic (inhibition of neuronal uptake of norepinephrine) and local anesthetic (Na+ channel blockade) properties. Neurotransmitters released from cardiac sympathetic nerves bind to both alpha- and beta-adrenergic receptors eliciting a cascade of intracellular responses. Stimulation of beta-adrenergic receptors activates adenylate cyclase, increasing cyclic AMP levels, whereas alpha-adrenergic receptor stimulation activates phospholipase C, increasing inositol trisphosphate. These second messengers, in turn, elicit increases in cystolic calcium. Elevations in cystolic calcium can provoke oscillatory depolarizations of the cardiac membrane, triggering sustained action potential generation and extrasystoles. Cocaine also acts as a local anesthetic by inhibiting sodium influx into cardiac cells, which impairs impulse conduction and creates an ideal substrate for reentrant circuits. Thus, the adrenergic and anesthetic properties of cocaine could act synergistically to elicit and maintain ventricular fibrillation. Adrenergic receptor activation would trigger the event whereas sodium channel blockade would create the reentrant substrate to perpetuate the malignant arrhythmias.

UI MeSH Term Description Entries
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000779 Anesthetics, Local Drugs that block nerve conduction when applied locally to nerve tissue in appropriate concentrations. They act on any part of the nervous system and on every type of nerve fiber. In contact with a nerve trunk, these anesthetics can cause both sensory and motor paralysis in the innervated area. Their action is completely reversible. (From Gilman AG, et. al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed) Nearly all local anesthetics act by reducing the tendency of voltage-dependent sodium channels to activate. Anesthetics, Conduction-Blocking,Conduction-Blocking Anesthetics,Local Anesthetic,Anesthetics, Topical,Anesthetic, Local,Anesthetics, Conduction Blocking,Conduction Blocking Anesthetics,Local Anesthetics,Topical Anesthetics
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001145 Arrhythmias, Cardiac Any disturbances of the normal rhythmic beating of the heart or MYOCARDIAL CONTRACTION. Cardiac arrhythmias can be classified by the abnormalities in HEART RATE, disorders of electrical impulse generation, or impulse conduction. Arrhythmia,Arrythmia,Cardiac Arrhythmia,Cardiac Arrhythmias,Cardiac Dysrhythmia,Arrhythmia, Cardiac,Dysrhythmia, Cardiac

Related Publications

G E Billman
September 2009, Journal of medical toxicology : official journal of the American College of Medical Toxicology,
G E Billman
April 1993, Journal of pharmacological and toxicological methods,
G E Billman
January 1996, International journal of cardiology,
G E Billman
March 1994, International journal of cardiology,
G E Billman
March 2005, The Journal of biological chemistry,
G E Billman
June 1998, Annals of the New York Academy of Sciences,
G E Billman
January 2012, Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan,
G E Billman
December 1994, Critical care medicine,
Copied contents to your clipboard!