Low-dose CT reconstruction via edge-preserving total variation regularization. 2011

Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
Department of Biomedical Engineering, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, People's Republic of China.

High radiation dose in computed tomography (CT) scans increases the lifetime risk of cancer and has become a major clinical concern. Recently, iterative reconstruction algorithms with total variation (TV) regularization have been developed to reconstruct CT images from highly undersampled data acquired at low mAs levels in order to reduce the imaging dose. Nonetheless, the low-contrast structures tend to be smoothed out by the TV regularization, posing a great challenge for the TV method. To solve this problem, in this work we develop an iterative CT reconstruction algorithm with edge-preserving TV (EPTV) regularization to reconstruct CT images from highly undersampled data obtained at low mAs levels. The CT image is reconstructed by minimizing energy consisting of an EPTV norm and a data fidelity term posed by the x-ray projections. The EPTV term is proposed to preferentially perform smoothing only on the non-edge part of the image in order to better preserve the edges, which is realized by introducing a penalty weight to the original TV norm. During the reconstruction process, the pixels at the edges would be gradually identified and given low penalty weight. Our iterative algorithm is implemented on graphics processing unit to improve its speed. We test our reconstruction algorithm on a digital NURBS-based cardiac-troso phantom, a physical chest phantom and a Catphan phantom. Reconstruction results from a conventional filtered backprojection (FBP) algorithm and a TV regularization method without edge-preserving penalty are also presented for comparison purposes. The experimental results illustrate that both the TV-based algorithm and our EPTV algorithm outperform the conventional FBP algorithm in suppressing the streaking artifacts and image noise under a low-dose context. Our edge-preserving algorithm is superior to the TV-based algorithm in that it can preserve more information of low-contrast structures and therefore maintain acceptable spatial resolution.

UI MeSH Term Description Entries
D011829 Radiation Dosage The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv). Sievert Units,Dosage, Radiation,Gray Units,Gy Radiation,Sv Radiation Dose Equivalent,Dosages, Radiation,Radiation Dosages,Units, Gray,Units, Sievert
D011835 Radiation Protection Methods and practices adopted to protect against RADIATION. Protection, Radiation
D011857 Radiographic Image Interpretation, Computer-Assisted Computer systems or networks designed to provide radiographic interpretive information. Computer Assisted Radiographic Image Interpretation,Computer-Assisted Radiographic Image Interpretation,Radiographic Image Interpretation, Computer Assisted
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D012449 Safety Freedom from exposure to danger and protection from the occurrence or risk of injury or loss. It suggests optimal precautions in the workplace, on the street, in the home, etc., and includes personal safety as well as the safety of property. Safeties
D014057 Tomography, X-Ray Computed Tomography using x-ray transmission and a computer algorithm to reconstruct the image. CAT Scan, X-Ray,CT Scan, X-Ray,Cine-CT,Computerized Tomography, X-Ray,Electron Beam Computed Tomography,Tomodensitometry,Tomography, Transmission Computed,X-Ray Tomography, Computed,CAT Scan, X Ray,CT X Ray,Computed Tomography, X-Ray,Computed X Ray Tomography,Computerized Tomography, X Ray,Electron Beam Tomography,Tomography, X Ray Computed,Tomography, X-Ray Computer Assisted,Tomography, X-Ray Computerized,Tomography, X-Ray Computerized Axial,Tomography, Xray Computed,X Ray Computerized Tomography,X Ray Tomography, Computed,X-Ray Computer Assisted Tomography,X-Ray Computerized Axial Tomography,Beam Tomography, Electron,CAT Scans, X-Ray,CT Scan, X Ray,CT Scans, X-Ray,CT X Rays,Cine CT,Computed Tomography, Transmission,Computed Tomography, X Ray,Computed Tomography, Xray,Computed X-Ray Tomography,Scan, X-Ray CAT,Scan, X-Ray CT,Scans, X-Ray CAT,Scans, X-Ray CT,Tomographies, Computed X-Ray,Tomography, Computed X-Ray,Tomography, Electron Beam,Tomography, X Ray Computer Assisted,Tomography, X Ray Computerized,Tomography, X Ray Computerized Axial,Transmission Computed Tomography,X Ray Computer Assisted Tomography,X Ray Computerized Axial Tomography,X Ray, CT,X Rays, CT,X-Ray CAT Scan,X-Ray CAT Scans,X-Ray CT Scan,X-Ray CT Scans,X-Ray Computed Tomography,X-Ray Computerized Tomography,Xray Computed Tomography
D016477 Artifacts Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis. Artefacts,Artefact,Artifact
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging

Related Publications

Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
July 2015, IEEE transactions on medical imaging,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
January 2014, Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
November 2015, Nan fang yi ke da xue xue bao = Journal of Southern Medical University,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
January 2023, Physics in medicine and biology,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
March 2019, Artificial intelligence in medicine,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
June 2014, Physics in medicine and biology,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
January 2016, Computer methods and programs in biomedicine,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
April 2018, Physics in medicine and biology,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
January 2011, Journal of X-ray science and technology,
Zhen Tian, and Xun Jia, and Kehong Yuan, and Tinsu Pan, and Steve B Jiang
February 2002, IEEE transactions on medical imaging,
Copied contents to your clipboard!