Immunochemical analysis of membrane vesicles from Escherichia coli. 1979

P Owen, and H R Kaback

Membrane vesicles isolated from Escherichia coli ML 308--225 have been analyzed by crossed immunoelectrophoresis, and immunoprecipitates corresponding to the following cellular components have been identified: ATPase (EC 3.6.1,3), two or three NADH dehydrogenases (EC 1.6.99.3), D-lactate dehydrogenase (EC 1.1.1.27), glutamate dehydrogenase (EC 1.4.1.4), dihydro-orotate dehydrogenase (EC 1.3.3.1), 6-phosphogluconate dehydrogenase (EC 1.1.1.43), polynucleotide phosphorylase (EC 2.3.7.8), beta-galactosidase (EC 3.2.1.23), lipopolysaccharide, and Braun's lipoprotein. The cellular origin of many of the vesicle immunogens is determined, and Braun's lipoprotein is used as a marker to quantitate the extent of outer membrane contamination (less than 3%). Membrane antigens are also characterized with regard to their amphiphilic or hydrophilic properties by charge-shift crossed immunoelectrophoresis. Furthermore, the following immunogens cross-react with components in membrane vesicles prepared from Salmonella typhimurium: one of the three NADH dehydrogenases, ATPase, polynucleotide phosphorylase, 6-phosphogluconate dehydrogenase, Braun's lipoprotein, and three unidentified antigens. In the accompanying paper [Owen, P., & Kaback, H. R. (1979) Biochemistry 18 (following paper in this issue)] quantitative immunoadsorption is utilized to establish the topology of the vesicles with respect to the distribution of antigens on the inner and outer faces of the membrane.

UI MeSH Term Description Entries
D007123 Immunoelectrophoresis, Two-Dimensional Immunoelectrophoresis in which a second electrophoretic transport is performed on the initially separated antigen fragments into an antibody-containing medium in a direction perpendicular to the first electrophoresis. Immunoelectrophoresis, Crossed,Immunoelectrophoresis, 2-D,Immunoelectrophoresis, 2D,2-D Immunoelectrophoresis,2D Immunoelectrophoresis,Crossed Immunoelectrophoresis,Immunoelectrophoresis, 2 D,Immunoelectrophoresis, Two Dimensional,Two-Dimensional Immunoelectrophoresis
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D009247 NADH, NADPH Oxidoreductases A group of oxidoreductases that act on NADH or NADPH. In general, enzymes using NADH or NADPH to reduce a substrate are classified according to the reverse reaction, in which NAD+ or NADP+ is formally regarded as an acceptor. This subclass includes only those enzymes in which some other redox carrier is the acceptor. (Enzyme Nomenclature, 1992, p100) EC 1.6. Oxidoreductases, NADH, NADPH,NADPH Oxidoreductases NADH,Oxidoreductases NADH, NADPH
D010734 Phosphogluconate Dehydrogenase An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43. 6-Phosphogluconate Dehydrogenase,6 Phosphogluconate Dehydrogenase,Dehydrogenase, 6-Phosphogluconate,Dehydrogenase, Phosphogluconate
D011117 Polyribonucleotide Nucleotidyltransferase An enzyme of the transferase class that catalyzes the reaction RNA(n+1) and orthophosphate to yield RNA(n) and a nucleoside diphosphate, or the reverse reaction. ADP, IDP, GDP, UDP, and CDP can act as donors in the latter case. (From Dorland, 27th ed) EC 2.7.7.8. Polynucleotide Phosphorylase,Nucleotidyltransferase, Polyribonucleotide,Phosphorylase, Polynucleotide
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004081 Dihydroorotate Oxidase An enzyme that in the course of pyrimidine biosynthesis, catalyzes the oxidation of dihydro-orotic acid to orotic acid utilizing oxygen as the electron acceptor. This enzyme is a flavoprotein which contains both FLAVIN-ADENINE DINUCLEOTIDE and FLAVIN MONONUCLEOTIDE as well as iron-sulfur centers. EC 1.3.3.1. Dihydro-Orotate Oxidase,Dihydro Orotate Oxidase,Oxidase, Dihydro-Orotate,Oxidase, Dihydroorotate

Related Publications

P Owen, and H R Kaback
February 1999, Journal of bacteriology,
P Owen, and H R Kaback
April 1978, Biochimica et biophysica acta,
P Owen, and H R Kaback
July 1976, Journal of bacteriology,
P Owen, and H R Kaback
December 1979, European journal of biochemistry,
P Owen, and H R Kaback
June 1975, The Journal of biological chemistry,
Copied contents to your clipboard!