| D007521 |
Isocitrate Dehydrogenase |
An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41. |
NAD Isocitrate Dehydrogenase,Isocitrate Dehydrogenase (NAD+),Isocitrate Dehydrogenase-I,Dehydrogenase, Isocitrate,Dehydrogenase, NAD Isocitrate,Isocitrate Dehydrogenase I,Isocitrate Dehydrogenase, NAD |
|
| D007700 |
Kinetics |
The rate dynamics in chemical or physical systems. |
|
|
| D008958 |
Models, Molecular |
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. |
Molecular Models,Model, Molecular,Molecular Model |
|
| D009097 |
Multienzyme Complexes |
Systems of enzymes which function sequentially by catalyzing consecutive reactions linked by common metabolic intermediates. They may involve simply a transfer of water molecules or hydrogen atoms and may be associated with large supramolecular structures such as MITOCHONDRIA or RIBOSOMES. |
Complexes, Multienzyme |
|
| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D004926 |
Escherichia coli |
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. |
Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli |
|
| D006090 |
Gram-Negative Bacteria |
Bacteria which lose crystal violet stain but are stained pink when treated by Gram's method. |
Gram Negative Bacteria |
|
| D013379 |
Substrate Specificity |
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. |
Specificities, Substrate,Specificity, Substrate,Substrate Specificities |
|
| D016957 |
Burkholderia pseudomallei |
A species of gram-negative, aerobic bacteria that causes MELIOIDOSIS. It has been isolated from soil and water in tropical regions, particularly Southeast Asia. |
Pseudomonas pseudomallei |
|
| D054730 |
Protein Interaction Domains and Motifs |
Protein modules with conserved ligand-binding surfaces which mediate specific interaction functions in SIGNAL TRANSDUCTION PATHWAYS and the specific BINDING SITES of their cognate protein LIGANDS. |
Protein Interaction Domains,Protein Interaction Motifs,Binding Motifs, Protein Interaction,Protein Interaction Binding Motifs,Protein-Protein Interaction Domains,Domain, Protein Interaction,Domain, Protein-Protein Interaction,Domains, Protein Interaction,Domains, Protein-Protein Interaction,Motif, Protein Interaction,Motifs, Protein Interaction,Protein Interaction Domain,Protein Interaction Motif,Protein Protein Interaction Domains,Protein-Protein Interaction Domain |
|