Measurement of in vivo expression of nrdA and nrdB genes of Escherichia coli by using lacZ gene fusions. 1990

I Gibert, and S Calero, and J Barbé
Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University, Barcelona, Spain.

By using a promoter probe plasmid we investigated expression of the linked nrdA and nrdB genes coding for the two different subunits of the ribonucleoside diphosphate reductase enzyme of Escherichia coli. For this reason, nrdA-lacZ, nrdAB-lacZ and nrdB-lacZ fusions were constructed. Results obtained indicate that the nrdB gene has a promoter from which it may be transcribed independently of the nrdA gene. Furthermore, the nrdB gene may also be transcribed from the nrdA promoter. The expression of the nrdB gene is about 14-fold higher from the nrdA promoter than from its own promoter. The induction of both nrdA and nrdB genes by DNA-damaging agents in the wild-type strain as well as in several SOS mutants was also studied; nrdA gene expression was increased by these treatments in RecA+, RecA-, and LexAInd- strains, although in both RecA- and LexAInd- mutants the nrdA gene expression was considerably lower than that in RecA+ cells. nrdB gene expression was stimulated by DNA damage only when its transcription was from the nrdA promoter, but there was no effect when nrdB was transcribed from its own promoter. In addition, the basal level of nrdA-lacZ and nrdAB-lacZ fusions was reduced in strains containing either RecA- and LexAInd- mutations or a multicopy plasmid carrying the lexA+ gene, whereas the presence of a LexA51Def mutation increased the constitutive expression of both fusions. On the contrary, the basal level of the nrdB-lacZ fusion remained constant in all these strains. Together these results indicate that induction of the SOS response enhances expression of the nrd genes from the nrdA promoter.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007763 Lac Operon The genetic unit consisting of three structural genes, an operator and a regulatory gene. The regulatory gene controls the synthesis of the three structural genes: BETA-GALACTOSIDASE and beta-galactoside permease (involved with the metabolism of lactose), and beta-thiogalactoside acetyltransferase. Lac Gene,LacZ Genes,Lactose Operon,Gene, Lac,Gene, LacZ,Genes, Lac,Genes, LacZ,Lac Genes,Lac Operons,LacZ Gene,Lactose Operons,Operon, Lac,Operon, Lactose,Operons, Lac,Operons, Lactose
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial

Related Publications

I Gibert, and S Calero, and J Barbé
October 1984, Journal of bacteriology,
I Gibert, and S Calero, and J Barbé
October 1991, FEMS microbiology letters,
I Gibert, and S Calero, and J Barbé
December 1976, Journal of bacteriology,
I Gibert, and S Calero, and J Barbé
July 1982, Journal of molecular biology,
I Gibert, and S Calero, and J Barbé
January 1983, Journal of molecular and applied genetics,
I Gibert, and S Calero, and J Barbé
November 1987, Journal of virology,
I Gibert, and S Calero, and J Barbé
June 1980, Journal of bacteriology,
I Gibert, and S Calero, and J Barbé
July 1988, Proceedings of the National Academy of Sciences of the United States of America,
I Gibert, and S Calero, and J Barbé
December 1983, Journal of bacteriology,
Copied contents to your clipboard!