Asymmetric distribution of dystrophin in developing and adult Torpedo marmorata electrocyte: evidence for its association with the acetylcholine receptor-rich membrane. 1990

B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
Biologie Cellulaire des Membranes, Institut Jacques Monod, Université Paris, France.

Dystrophin has been shown to occur in Torpedo electrocyte [Chang, H. W., Bock, E. & Bonilla, E. (1989) J. Biol. Chem. 264, 20831-20834], a highly polarized syncytium that is embryologically derived from skeletal muscle and displays functionally distinct plasma membrane domains on its innervated and noninnervated faces. In the present study, we investigated the subcellular distribution of dystrophin in the adult electrocyte from Torpedo marmorata and the evolution of its distribution during embryogenesis. Immunofluorescence experiments performed on adult electrocytes with a polyclonal antibody directed against chicken dystrophin revealed that dystrophin immunoreactivity codistributed exclusively with the acetylcholine receptor along the innervated membrane. At the ultrastructural level, dystrophin immunoreactivity appears confined to the face of the subsynaptic membrane exposed to the cytoplasm. In developing electrocytes (45-mm embryo), dystrophin is already detectable at the acetylcholine receptor-rich ventral pole of the cells before the entry of the electromotor axons. Furthermore, we show that dystrophin represents a major component of purified membrane fractions rich in acetylcholine receptor. A putative role of dystrophin in the organization and stabilization of the subsynaptic membrane domain of the electrocyte is discussed.

UI MeSH Term Description Entries
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D011950 Receptors, Cholinergic Cell surface proteins that bind acetylcholine with high affinity and trigger intracellular changes influencing the behavior of cells. Cholinergic receptors are divided into two major classes, muscarinic and nicotinic, based originally on their affinity for nicotine and muscarine. Each group is further subdivided based on pharmacology, location, mode of action, and/or molecular biology. ACh Receptor,Acetylcholine Receptor,Acetylcholine Receptors,Cholinergic Receptor,Cholinergic Receptors,Cholinoceptive Sites,Cholinoceptor,Cholinoceptors,Receptors, Acetylcholine,ACh Receptors,Receptors, ACh,Receptor, ACh,Receptor, Acetylcholine,Receptor, Cholinergic,Sites, Cholinoceptive
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004557 Electric Organ In about 250 species of electric fishes, modified muscle fibers forming disklike multinucleate plates arranged in stacks like batteries in series and embedded in a gelatinous matrix. A large torpedo ray may have half a million plates. Muscles in different parts of the body may be modified, i.e., the trunk and tail in the electric eel, the hyobranchial apparatus in the electric ray, and extrinsic eye muscles in the stargazers. Powerful electric organs emit pulses in brief bursts several times a second. They serve to stun prey and ward off predators. A large torpedo ray can produce of shock of more than 200 volts, capable of stunning a human. (Storer et al., General Zoology, 6th ed, p672) Electric Organs,Organ, Electric,Organs, Electric
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).

Related Publications

B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
January 1998, Journal of physiology, Paris,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
January 1989, The Journal of cell biology,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
December 1991, Development (Cambridge, England),
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
June 1983, Biochemistry,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
May 1993, Neurochemical research,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
January 1983, Neurochemistry international,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
January 1990, The International journal of biochemistry,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
January 1984, Advances in experimental medicine and biology,
B J Jasmin, and A Cartaud, and M A Ludosky, and J P Changeux, and J Cartaud
December 1992, Biochemistry international,
Copied contents to your clipboard!