Characteristics of Candida albicans adherence to mouse tissues. 1990

J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
Department of Microbiology, Montana State University, Bozeman 59717.

An ex vivo binding assay originally described for determining lymphocyte homing receptors was adapted for studying Candida albicans-host cell interactions in unfixed tissue sections. BALB/cByJ mice were sacrificed, and various organs were removed, rapidly frozen on dry ice, and sectioned. C. albicans yeast cells were suspended to 1.5 x 10(8) cells per ml in Dulbecco modified Eagle medium supplemented with 5% newborn calf serum, and 100 microliters of the suspension was added to tissue sections for 15 min with rotation at 4 degrees C or at 22 to 24 degrees C. The sections were then fixed in glutaraldehyde, washed, and examined. Stationary-phase yeast cells adhered better than log-phase cells, and adherence characteristics were similar at 4 degrees C and 22 to 24 degrees C. Yeast cells from nine strains of C. albicans showed similar tissue specificity. Adherence to lymph node tissue was confined to subcapsular spaces and trabecular sinuses. In the spleen, yeast cells bound to the marginal zones. In both tissues, an association of yeast cells with tissue macrophages was suggested by results with macrophage-specific monoclonal antibodies and fluorescent or immunoperoxidase staining techniques. C. albicans adhered to convoluted tubules, glomeruli, and the tunica media of arterioles in the kidney. During experimentally induced fungemia in mice, C. albicans yeast cells associated with the same tissue sites as in the ex vivo assay, except that binding to renal arterioles was not seen in the in vivo test. A strain of Saccharomyces cerevisiae showed some adherence patterns in common with C. albicans, which indicates that tissue adherence is not sufficient for virulence. Mechanisms of attachment were not determined, but strains of C. albicans varied quantitatively in their ability to attach, and binding was inhibited by chelators of divalent cations.

UI MeSH Term Description Entries
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D002176 Candida albicans A unicellular budding fungus which is the principal pathogenic species causing CANDIDIASIS (moniliasis). Candida albicans var. stellatoidea,Candida stellatoidea,Dematium albicans,Monilia albicans,Myceloblastanon albicans,Mycotorula albicans,Parasaccharomyces albicans,Procandida albicans,Procandida stellatoidea,Saccharomyces albicans,Syringospora albicans
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein
D000268 Adhesiveness A property of the surface of an object that makes it stick to another surface. Adhesivenesses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001158 Arteries The vessels carrying blood away from the heart. Artery
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.

Related Publications

J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
September 1991, Infection and immunity,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
March 1995, FEMS immunology and medical microbiology,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
March 1992, Microvascular research,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
June 1995, FEMS microbiology letters,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
January 1989, Fukuoka Shika Daigaku Gakkai zasshi,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
August 1987, Nihon Hotetsu Shika Gakkai zasshi,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
December 1986, Hiroshima journal of medical sciences,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
January 2000, British journal of biomedical science,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
September 1992, The Journal of infectious diseases,
J E Cutler, and D L Brawner, and K C Hazen, and M A Jutila
January 1994, Canadian journal of microbiology,
Copied contents to your clipboard!