Neostigmine-induced contraction and nitric oxide-induced relaxation of isolated ileum from STZ diabetic guinea pigs. 2011

Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.

Both delayed gastrointestinal transit and autonomic neuropathy have been documented in patients with diabetes mellitus. The mechanism of neostigmine, an agent that mimics release of acetylcholine from autonomic neurons by prokinetic agents, to contract smooth muscle, despite dysfunctional enteric neural pathways, was determined using isolated ilea from STZ-treated and control guinea pigs. Both bethanechol- and neostigmine-induced contractions were stronger in diabetic ileum. Bethanechol-induced contractions of control but not diabetic ileum were increased by low dose scopolamine suggesting reduced activation of presynaptic muscarinic autoreceptors in diabetic ileum. The muscarinic receptor antagonist 4-DAMP strongly, but the nicotinic receptor antagonist hexamethonium only weakly, reduced neostigmine-induced contractions of control and diabetic ilea. The amount of acetylcholine, inferred from tissue choline content, was increased in diabetic ileum. Nicotinic neural and noncholinergic postjunctional smooth muscle receptors contributed more strongly to neostigmine-induced contractions in diabetic than control ileum. Relaxation of diabetic ileum by exogenous nitric oxide generated from sodium nitroprusside was comparable to control ileum, but smooth muscle relaxation by l-arginine using neuronal nitric oxide synthase to generate nitric oxide was weaker in diabetic ileum with evidence for a role for inducible nitric oxide synthase. Despite autonomic neuropathy, neostigmine strongly contracted ileum from diabetic animals but by a different mechanism including stronger activation of postjunctional muscarinic receptors, greater synaptic acetylcholine, stronger activation of noncholinergic excitatory pathways, and weaker activation of inhibitory pathways. A selective medication targeting a specific neural pathway may more effectively treat disordered gastrointestinal transit in patients with diabetes mellitus.

UI MeSH Term Description Entries
D007082 Ileum The distal and narrowest portion of the SMALL INTESTINE, between the JEJUNUM and the ILEOCECAL VALVE of the LARGE INTESTINE.
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009126 Muscle Relaxation That phase of a muscle twitch during which a muscle returns to a resting position. Muscle Relaxations,Relaxation, Muscle,Relaxations, Muscle
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009388 Neostigmine A cholinesterase inhibitor used in the treatment of myasthenia gravis and to reverse the effects of muscle relaxants such as gallamine and tubocurarine. Neostigmine, unlike PHYSOSTIGMINE, does not cross the blood-brain barrier. Synstigmin,Neostigmine Bromide,Neostigmine Methylsulfate,Polstigmine,Proserine,Prostigmin,Prostigmine,Prozerin,Syntostigmine,Bromide, Neostigmine,Methylsulfate, Neostigmine
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010277 Parasympathomimetics Drugs that mimic the effects of parasympathetic nervous system activity. Included here are drugs that directly stimulate muscarinic receptors and drugs that potentiate cholinergic activity, usually by slowing the breakdown of acetylcholine (CHOLINESTERASE INHIBITORS). Drugs that stimulate both sympathetic and parasympathetic postganglionic neurons (GANGLIONIC STIMULANTS) are not included here. Parasympathomimetic Agents,Parasympathomimetic Drugs,Parasympathomimetic Effect,Parasympathomimetic Effects,Agents, Parasympathomimetic,Drugs, Parasympathomimetic,Effect, Parasympathomimetic,Effects, Parasympathomimetic
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D005769 Gastrointestinal Motility The motor activity of the GASTROINTESTINAL TRACT. Intestinal Motility,Gastrointestinal Motilities,Intestinal Motilities,Motilities, Gastrointestinal,Motilities, Intestinal,Motility, Gastrointestinal,Motility, Intestinal

Related Publications

Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
February 2011, Autonomic neuroscience : basic & clinical,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
June 1999, Naunyn-Schmiedeberg's archives of pharmacology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
July 1996, General pharmacology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
April 1991, Naunyn-Schmiedeberg's archives of pharmacology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
February 1994, Comparative biochemistry and physiology. Pharmacology, toxicology and endocrinology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
December 1979, Naunyn-Schmiedeberg's archives of pharmacology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
December 1995, Journal of smooth muscle research = Nihon Heikatsukin Gakkai kikanshi,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
August 1979, European journal of pharmacology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
January 1996, Methods in enzymology,
Joseph Cellini, and Anne Marie Zaura Jukic, and Kathy J LePard
January 1994, European journal of pharmacology,
Copied contents to your clipboard!