| D008854 |
Microscopy, Electron |
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. |
Electron Microscopy |
|
| D008970 |
Molecular Weight |
The sum of the weight of all the atoms in a molecule. |
Molecular Weights,Weight, Molecular,Weights, Molecular |
|
| D011487 |
Protein Conformation |
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). |
Conformation, Protein,Conformations, Protein,Protein Conformations |
|
| D005656 |
Fungal Proteins |
Proteins found in any species of fungus. |
Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal |
|
| D017353 |
Gene Deletion |
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus. |
Deletion, Gene,Deletions, Gene,Gene Deletions |
|
| D017494 |
Proton Pumps |
Integral membrane proteins that transport protons across a membrane. This transport can be linked to the hydrolysis of ADENOSINE TRIPHOSPHATE. What is referred to as proton pump inhibitors frequently is about POTASSIUM HYDROGEN ATPASE. |
H(+) Pump,H+ Pump,Proton Pump,Pump, H+,Pump, Proton,Pumps, Proton |
|
| D042967 |
Electron Transport Complex I |
A flavoprotein and iron sulfur-containing oxidoreductase complex that catalyzes the conversion of UBIQUINONE to ubiquinol. In MITOCHONDRIA the complex also couples its reaction to the transport of PROTONS across the internal mitochondrial membrane. The NADH DEHYDROGENASE component of the complex can be isolated and is listed as EC 1.6.99.3. |
NADH Dehydrogenase (Ubiquinone),Complex I Dehydrogenase,NADH DH I,NADH Dehydrogenase Complex 1,NADH Dehydrogenase I,NADH Q1 Oxidoreductase,NADH-CoQ Reductase,NADH-Coenzyme Q Reductase,NADH-Ubiquinone Oxidoreductase,NADH-Ubiquinone Reductase,Respiratory Complex I,Rotenone-Sensitive Mitochondrial NADH-Ubiquinone Oxidoreductase,Ubiquinone Reductase,Dehydrogenase, Complex I,NADH CoQ Reductase,NADH Coenzyme Q Reductase,NADH Ubiquinone Oxidoreductase,NADH Ubiquinone Reductase,Oxidoreductase, NADH Q1,Oxidoreductase, NADH-Ubiquinone,Reductase, NADH-Ubiquinone,Rotenone Sensitive Mitochondrial NADH Ubiquinone Oxidoreductase |
|
| D055786 |
Gene Knockout Techniques |
Techniques to alter a gene sequence that result in an inactivated gene, or one in which the expression can be inactivated at a chosen time during development to study the loss of function of a gene. |
Gene Knock-Out Techniques,Gene Knock Out,Gene Knock Out Techniques,Gene Knockout,Gene Knock Outs,Gene Knock-Out Technique,Gene Knockout Technique,Gene Knockouts,Knock Out, Gene,Knock Outs, Gene,Knock-Out Technique, Gene,Knock-Out Techniques, Gene,Knockout Technique, Gene,Knockout Techniques, Gene,Knockout, Gene,Knockouts, Gene,Out, Gene Knock,Outs, Gene Knock,Technique, Gene Knock-Out,Technique, Gene Knockout,Techniques, Gene Knock-Out,Techniques, Gene Knockout |
|
| D057075 |
Enzyme Assays |
Methods used to measure the relative activity of a specific enzyme or its concentration in solution. Typically an enzyme substrate is added to a buffer solution containing enzyme and the rate of conversion of substrate to product is measured under controlled conditions. Many classical enzymatic assay methods involve the use of synthetic colorimetric substrates and measuring the reaction rates using a spectrophotometer. |
Enzymatic Assays,Indirect Enzymatic Assays,Indirect Enzyme Assays,Assay, Enzymatic,Assay, Enzyme,Assay, Indirect Enzymatic,Assay, Indirect Enzyme,Assays, Enzymatic,Assays, Enzyme,Assays, Indirect Enzymatic,Assays, Indirect Enzyme,Enzymatic Assay,Enzymatic Assay, Indirect,Enzymatic Assays, Indirect,Enzyme Assay,Enzyme Assay, Indirect,Enzyme Assays, Indirect,Indirect Enzymatic Assay,Indirect Enzyme Assay |
|
| D024101 |
Mitochondrial Proteins |
Proteins encoded by the mitochondrial genome or proteins encoded by the nuclear genome that are imported to and resident in the MITOCHONDRIA. |
Proteins, Mitochondrial,Mitochondrial Protein,Protein, Mitochondrial |
|