Reduced postprandial skeletal muscle blood flow contributes to glucose intolerance in human obesity. 1990

A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
Department of Medicine, Veterans Administration Medical Center, Indianapolis, Indiana 46202.

While it is well accepted that the disposal of an oral glucose load (OGL) occurs primarily in skeletal muscle, the mechanisms by which this occurs are not completely elucidated. Glucose uptake (GU) in skeletal muscle follows the Fick principal, such that GU equals the products of the arteriovenous glucose difference (AVGd) across and the blood flow (BF) into muscle. It is widely believed that in the postprandial period both insulin and glucose increase GU by increasing the AVGd; however, a role for increments in BF in the disposal and tolerance of an OGL has not been established. To investigate this issue, whole body GU (isotope dilution), leg GU (leg balance technique), leg BF, and cardiac index (CI) were measured after an overnight fast and over 180 min after an OGL (1 g/kg) in 8 lean (ln) and 8 obese (ob) subjects [mean +/- SEM age, 36 +/- 2 vs. 37 +/- 2 yr (P = NS) and 60 +/- 1 vs. 99 +/- 5 kg (P less than 0.01), respectively]. Serum glucose levels were higher in the ob than in the ln subjects between 100 and 160 min, indicating reduced glucose tolerance. Fasting and post-OGL serum insulin levels were 2- to 3-fold higher in ob vs. ln at all times, indicating insulin resistance. Peak (40-80 min) incremental whole body GU above baseline was 32% lower in ob vs. ln, (P less than 0.05). Peak femoral AVGd was not different between ob and ln (0.55 +/- 0.16 vs. 0.66 +/- 0.14 mmol/L; P = NS). Peak leg BF increased 36% over baseline in ln (0.328 +/- 0.052 to 0.449 +/- 0.073 L/min; P less than 0.05), while ob subjects displayed no change in leg BF from baseline. Consequently, peak leg GU was 44% lower in ob vs. ln (P less than 0.05). CI increased 24% from baseline at 60 min in ln (P less than 0.05), but was unchanged in ob. In summary, after an OGL 1) femoral AVGd increases in both ln and ob subjects, but skeletal muscle BF and CI increase in ln only; 2) since peak femoral AVGd values were similar in ln and ob, differences in peak leg GU and (by inference) whole body GU are largely due to reduced BF to insulin-sensitive tissues; and 3) hemodynamics play an important role in the physiological disposal of an OGL, and therefore, hemodynamic defects can potentially contribute to reduced glucose tolerance and insulin resistance.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009765 Obesity A status with BODY WEIGHT that is grossly above the recommended standards, usually due to accumulation of excess FATS in the body. The standards may vary with age, sex, genetic or cultural background. In the BODY MASS INDEX, a BMI greater than 30.0 kg/m2 is considered obese, and a BMI greater than 40.0 kg/m2 is considered morbidly obese (MORBID OBESITY).
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D002306 Cardiac Volume The volume of the HEART, usually relating to the volume of BLOOD contained within it at various periods of the cardiac cycle. The amount of blood ejected from a ventricle at each beat is STROKE VOLUME. Heart Volume,Cardiac Volumes,Heart Volumes,Volume, Cardiac,Volume, Heart,Volumes, Cardiac,Volumes, Heart
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006439 Hemodynamics The movement and the forces involved in the movement of the blood through the CARDIOVASCULAR SYSTEM. Hemodynamic

Related Publications

A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
April 2009, Microcirculation (New York, N.Y. : 1994),
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
February 2002, American journal of physiology. Endocrinology and metabolism,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
April 2020, Clinical and experimental pharmacology & physiology,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
February 1994, The American journal of physiology,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
August 2015, JACC. Cardiovascular imaging,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
December 1999, The Journal of physiology,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
November 2016, Molecular metabolism,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
April 2019, Science advances,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
July 2005, BMC physiology,
A D Baron, and M Laakso, and G Brechtel, and B Hoit, and C Watt, and S V Edelman
August 2018, American journal of physiology. Endocrinology and metabolism,
Copied contents to your clipboard!