Rhythmic arm cycling differentially modulates stretch and H-reflex amplitudes in soleus muscle. 2011

Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC V8W 3P1, Canada.

During rhythmic arm cycling, soleus H-reflex amplitudes are reduced by modulation of group Ia presynaptic inhibition. This suppression of reflex amplitude is graded to the frequency of arm cycling with a threshold of 0.8 Hz. Despite the data on modulation of the soleus H-reflex amplitude induced by rhythmic arm cycling, comparatively little is known about the modulation of stretch reflexes due to remote limb movement. Therefore, the present study was intended to explore the effect of arm cycling on stretch and H-reflex amplitudes in the soleus muscle. In so doing, additional information on the mechanism of action during rhythmic arm cycling would be revealed. Although both reflexes share the same afferent pathway, we hypothesized that stretch reflex amplitudes would be less suppressed by arm cycling because they are less inhibited by presynaptic inhibition. Failure to reject this hypothesis would add additional strength to the argument that Ia presynaptic inhibition is the mechanism modulating soleus H-reflex amplitude during rhythmic arm cycling. Participants were seated in a customized chair with feet strapped to footplates. Three motor tasks were performed: static control trials and arm cycling at 1 and 2 Hz. Soleus H-reflexes were evoked using single 1 ms pulses of electrical stimulation delivered to the tibial nerve at the popliteal fossa. A constant M-wave and ~6% MVC activation of soleus were maintained across conditions. Stretch reflexes were evoked using a single sinusoidal pulse at 100 Hz given by a vibratory shaker placed over the triceps surae tendon and controlled by a custom-written LabView program. Results demonstrated that rhythmic arm cycling that was effective for conditioning soleus H-reflexes did not show a suppressive effect on the amplitude of the soleus stretch reflex. We suggest this indicates that stretch reflexes are less sensitive to conditioning by rhythmic arm movement, as compared to H-reflexes, due to the relative insensitivity to Ia presynaptic inhibition.

UI MeSH Term Description Entries
D008297 Male Males
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D010507 Periodicity The tendency of a phenomenon to recur at regular intervals; in biological systems, the recurrence of certain activities (including hormonal, cellular, neural) may be annual, seasonal, monthly, daily, or more frequently (ultradian). Cyclicity,Rhythmicity,Biological Rhythms,Bioperiodicity,Biorhythms,Biological Rhythm,Bioperiodicities,Biorhythm,Cyclicities,Periodicities,Rhythm, Biological,Rhythmicities,Rhythms, Biological
D012026 Reflex, Stretch Reflex contraction of a muscle in response to stretching, which stimulates muscle proprioceptors. Reflex, Tendon,Stretch Reflex,Tendon Reflex
D005081 Exercise Therapy A regimen or plan of physical activities designed and prescribed for specific therapeutic goals. Its purpose is to restore normal musculoskeletal function or to reduce pain caused by diseases or injuries. Rehabilitation Exercise,Remedial Exercise,Therapy, Exercise,Exercise Therapies,Exercise, Rehabilitation,Exercise, Remedial,Exercises, Rehabilitation,Exercises, Remedial,Rehabilitation Exercises,Remedial Exercises,Therapies, Exercise
D005260 Female Females
D006181 H-Reflex A monosynaptic reflex elicited by stimulating a nerve, particularly the tibial nerve, with an electric shock. H Reflex,H-Reflexes,H Reflexes,Reflex, H
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
June 2008, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
January 2014, Frontiers in human neuroscience,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
May 2010, Neuroscience letters,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
February 2009, Experimental brain research,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
February 2009, Neuroscience letters,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
January 2001, Motor control,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
May 2007, Neuroscience letters,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
May 2007, Experimental brain research,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
April 1988, Electroencephalography and clinical neurophysiology,
Andres F Palomino, and Sandra R Hundza, and E Paul Zehr
April 1999, Motor control,
Copied contents to your clipboard!