Stereostructure activity relationships of catecholamines on human platelet function. 1990

C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus 43210.

The concentration-dependent effects of clonidine, isomers of epinephrine, norepinephrine (NE), isoproterenol, cobefrin and alpha-methyldopamine, and related desoxy analogs (epinine, dopamine, N-isopropyldopamine) were examined on human platelets. The rank order of aggregatory potency (pD2 values) was R(-)-epinephrine (6.3) greater than R(-)-NE (5.9) greater than (+/-)-erythro-cobefrin (5.3) greater than S(+)-epinephrine (4.7) = S(+)-NE (4.7) = clonidine (4.7) = dopamine (4.6) greater than epinine (4.4) greater than S(+)-alpha-methyldopamine (4.3) = R(-)-alpha-methyldopamine (4.3) greater than (+/-)-threo-cobefrin (3.7). The isoproterenol isomers and N-isopropyl-dopamine were inactive as agonists. In 9 of 16 platelet-rich plasma preparations, R(-)-epinephrine, R(-)-NE, and (+/-)erythro-cobefrin were agonists and the remaining analogs blocked R(-)-NE-induced aggregation with a rank order of inhibitory potencies (pKB values) of clonidine (6.2) greater than S(+)-alpha-methyldopamine (5.0) greater than dopamine (4.6) = R(-)-alpha-methyldopamine (4.4) greater than or equal to S(+)-NE (4.3) greater than N-isopropyldopamine (4.1) greater than S(+)-isoproterenol (3.7) = R(-)-isoproterenol (3.5). Each compound was also able to reverse prostaglandin E1 (PGE1) (0.1 microM)-induced blockade of the maximal aggregation response to ADP. At high concentrations, R(-)-isoproterenol was more potent than either the S(+)-isomer or desoxy analog, N-isopropyldopamine, in the reversal of PGE1 inhibition of ADP aggregation. Phentolamine blocked these alpha 2-adrenoceptor-mediated actions against PGE1 on ADP aggregation. The rank order of potency for the reversal of PGE1-mediated inhibition of ADP aggregation by these catecholamines was similar to that observed for platelet aggregation. Our results indicate that (i) the stereochemical requirements for the interaction of catecholamines with platelet alpha 2-adrenoceptors are in agreement with the Easson-Stedman hypothesis and other alpha-adrenoceptor tissues; (ii) catecholamines lacking a benzylic hydroxyl group in the R-configuration and/or possessing an N-isopropyl group were alpha 2-adrenoceptor antagonists; (iii) clonidine gave quantitatively different responses compared with catecholamines for interaction with alpha 2-adrenoceptors; and (iv) inhibition of platelet adenylate cyclase is correlated to the inhibition of epinephrine-induced aggregation response for this series of compounds.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D008771 Nordefrin A norepinephrine derivative used as a vasoconstrictor agent. Methylnorepinephrine,3,4-Dihydroxynorephedrine,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol Hydrochloride, (R*,R*)-(+,-)-Isomer,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol Hydrochloride, (R*,S*)-(+-)-Isomer,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol Tartrate, (R*,R*), (R*,R*)-Isomer,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol Tartrate, (R*,S*), (R*,R*)-Isomer,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol, (R*,R*)-Isomer,4-(2-Amino-1-hydroxypropyl)-1,2-benzenediol, (R*,S*)-Isomer,Cobefrine,Corbadrine,Levonordefrin,Neo-Cobefrin,Nordefrin Hydrochloride,Nordefrin Hydrochloride, (R*,R*)-(+,-)-Isomer,Nordefrin Hydrochloride, (R*,S*)-(+,-)-Isomer,Nordefrin Tartrate, (R*,R*), (R*,R*) Isomer,Nordefrin Tartrate, (R*,S*), (R*,R*) Isomer,Nordefrin, (R*,R*)-Isomer,Nordefrin, (R*,S*)-Isomer,Norephrine,alpha-Methylnoradrenaline,alpha-Methylnorepinephrine,3,4 Dihydroxynorephedrine,Hydrochloride, Nordefrin,Neo Cobefrin,NeoCobefrin,alpha Methylnoradrenaline,alpha Methylnorepinephrine
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010646 Phentolamine A nonselective alpha-adrenergic antagonist. It is used in the treatment of hypertension and hypertensive emergencies, pheochromocytoma, vasospasm of RAYNAUD DISEASE and frostbite, clonidine withdrawal syndrome, impotence, and peripheral vascular disease. Fentolamin,Phentolamine Mesilate,Phentolamine Mesylate,Phentolamine Methanesulfonate,Phentolamine Mono-hydrochloride,Regitine,Regityn,Rogitine,Z-Max,Mesilate, Phentolamine,Mesylate, Phentolamine,Methanesulfonate, Phentolamine,Mono-hydrochloride, Phentolamine,Phentolamine Mono hydrochloride
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D010975 Platelet Aggregation Inhibitors Drugs or agents which antagonize or impair any mechanism leading to blood platelet aggregation, whether during the phases of activation and shape change or following the dense-granule release reaction and stimulation of the prostaglandin-thromboxane system. Antiaggregants, Platelet,Antiplatelet Agent,Antiplatelet Agents,Antiplatelet Drug,Blood Platelet Aggregation Inhibitor,Blood Platelet Antagonist,Blood Platelet Antiaggregant,PAR-1 Antagonists,Platelet Aggregation Inhibitor,Platelet Antagonist,Platelet Antagonists,Platelet Antiaggregant,Platelet Antiaggregants,Platelet Inhibitor,Protease-Activated Receptor-1 Antagonists,Antiplatelet Drugs,Blood Platelet Aggregation Inhibitors,Blood Platelet Antagonists,Blood Platelet Antiaggregants,Platelet Inhibitors,Agent, Antiplatelet,Aggregation Inhibitor, Platelet,Antagonist, Blood Platelet,Antagonist, Platelet,Antiaggregant, Blood Platelet,Antiaggregant, Platelet,Drug, Antiplatelet,Inhibitor, Platelet,Inhibitor, Platelet Aggregation,PAR 1 Antagonists,Platelet Antagonist, Blood,Platelet Antiaggregant, Blood,Protease Activated Receptor 1 Antagonists
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155

Related Publications

C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
July 1987, Clinical science (London, England : 1979),
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
August 1972, Arzneimittel-Forschung,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
January 1989, Rinsho byori. The Japanese journal of clinical pathology,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
January 1970, Annual review of pharmacology,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
July 1983, The American journal of physiology,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
January 1972, Recent advances in studies on cardiac structure and metabolism,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
March 1992, Journal of neurochemistry,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
March 1983, Research communications in chemical pathology and pharmacology,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
March 1966, Pharmacological reviews,
C H Ahn, and G Shams, and R L Schotzinger, and D D Miller, and D R Feller
May 1996, European journal of clinical investigation,
Copied contents to your clipboard!