Preparation and visible light photocatalytic activity of Ag/TiO₂/graphene nanocomposite. 2011

Yanyuan Wen, and Hanming Ding, and Yongkui Shan
Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.

Great efforts have been made to develop efficient visible light-activated photocatalysts in recent years. In this work, a new nanocomposite consisting of anatase TiO(2), Ag, and graphene was prepared for use as a visible light-activated photocatalyst, which exhibited significantly increased visible light absorption and improved photocatalytic activity, compared with Ag/TiO(2) and TiO(2)/graphene nanocomposites. The increased absorption in visible light region is originated from the strong interaction between TiO(2) nanoparticles and graphene, as well as the surface plasmon resonance effect of Ag nanoparticles that are mainly adsorbed on the surface of TiO(2) nanoparticles. The highly efficient photocatalytic activity is associated with the strong adsorption ability of graphene for aromatic dye molecules, fast photogenerated charge separation due to the formation of Schottky junction between TiO(2) and Ag nanoparticles and the high electron mobility of graphene sheets, as well as the broad absorption in the visible light region. This work suggests that the combination of the excellent electrical properties of graphene and the surface plasmon resonance effect of noble metallic nanoparticles provides a versatile strategy for the synthesis of novel and efficient visible light-activated photocatalysts.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008751 Methylene Blue A compound consisting of dark green crystals or crystalline powder, having a bronze-like luster. Solutions in water or alcohol have a deep blue color. Methylene blue is used as a bacteriologic stain and as an indicator. It inhibits GUANYLATE CYCLASE, and has been used to treat cyanide poisoning and to lower levels of METHEMOGLOBIN. Methylthionine Chloride,Swiss Blue,Basic Blue 9,Chromosmon,Methylene Blue N,Methylthioninium Chloride,Urolene Blue,Blue 9, Basic,Blue N, Methylene,Blue, Methylene,Blue, Swiss,Blue, Urolene
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D006108 Graphite An allotropic form of carbon that is used in pencils, as a lubricant, and in matches and explosives. It is obtained by mining and its dust can cause lung irritation. Graphene
D012834 Silver An element with the atomic symbol Ag, atomic number 47, and atomic weight 107.87. It is a soft metal that is used medically in surgical instruments, dental prostheses, and alloys. Long-continued use of silver salts can lead to a form of poisoning known as ARGYRIA.
D014025 Titanium A dark-gray, metallic element of widespread distribution but occurring in small amounts with atomic number, 22, atomic weight, 47.867 and symbol, Ti; specific gravity, 4.5; used for fixation of fractures.
D053761 Nanocomposites Nanometer-scale composite structures composed of organic molecules intimately incorporated with inorganic molecules. (Glossary of Biotechnology and Nanobiotechology Terms, 4th ed) Nanocomposite
D053768 Metal Nanoparticles Nanoparticles produced from metals whose uses include biosensors, optics, and catalysts. In biomedical applications the particles frequently involve the noble metals, especially gold and silver. Metal Nanocrystals,Metallic Nanocrystals,Metallic Nanoparticles,Metal Nanocrystal,Metal Nanoparticle,Metallic Nanocrystal,Metallic Nanoparticle,Nanocrystal, Metal,Nanocrystal, Metallic,Nanocrystals, Metal,Nanocrystals, Metallic,Nanoparticle, Metal,Nanoparticle, Metallic,Nanoparticles, Metal,Nanoparticles, Metallic
D020349 Surface Plasmon Resonance A biosensing technique in which biomolecules capable of binding to specific analytes or ligands are first immobilized on one side of a metallic film. Light is then focused on the opposite side of the film to excite the surface plasmons, that is, the oscillations of free electrons propagating along the film's surface. The refractive index of light reflecting off this surface is measured. When the immobilized biomolecules are bound by their ligands, an alteration in surface plasmons on the opposite side of the film is created which is directly proportional to the change in bound, or adsorbed, mass. Binding is measured by changes in the refractive index. The technique is used to study biomolecular interactions, such as antigen-antibody binding. Plasmon Resonance, Surface,Plasmon Resonances, Surface,Resonance, Surface Plasmon,Resonances, Surface Plasmon,Surface Plasmon Resonances

Related Publications

Yanyuan Wen, and Hanming Ding, and Yongkui Shan
May 2013, ACS applied materials & interfaces,
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
July 2015, Journal of colloid and interface science,
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
January 2014, Physical chemistry chemical physics : PCCP,
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
February 2019, Journal of nanoscience and nanotechnology,
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
January 2016, Materials (Basel, Switzerland),
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
July 2016, Journal of colloid and interface science,
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
January 2012, Water science and technology : a journal of the International Association on Water Pollution Research,
Yanyuan Wen, and Hanming Ding, and Yongkui Shan
January 2016, Nano-micro letters,
Copied contents to your clipboard!