Basic fibroblast growth factor (bFGF) immunoreactivity is present in chromaffin granules. 1990

R Westermann, and M Johannsen, and K Unsicker, and C Grothe
Department of Anatomy and Cell Biology, University of Marburg, F.R.G.

Basic fibroblast growth factor (bFGF) has recently been isolated from bovine adrenal glands. Immunohistological data revealed its presence in both adrenal cortex and adrenal medulla. Using immuno-electronmicroscopy, we found that in medullary chromaffin cells bFGF-immunoreactivity is localized in the secretory granules. Immunoreactivity also was observed by electronmicroscopy in isolated granules. Western blot analysis revealed the presence of the typical 18-kDa bFGF and additional immunoreactive materials with molecular masses of approximately 24, 30, and 46 kDa in whole bovine adrenal, and in cortex and medulla. Similar results were obtained with proteins from bovine chromaffin granules, with the following two exceptions: the 46-kDa immunoreactivity was found to be highly enriched when compared with medulla or cortex, and the 18-kDa band could be detected with only an antiserum against a synthetic peptide comprising the 24 NH2-terminal amino acids of bFGF, and not with an antiserum against purified bovine pituitary bFGF. All fractions enriched for bFGF-immunoreactivity showed neurotrophic activity for chick ciliary ganglion neurons, which could be blocked by antibodies. These results demonstrate for the first time the localization and occurrence of bFGF in a cellular secretory organelle, and present further evidence for the existence of higher molecular weight immunoreactive forms of bFGF.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002837 Chromaffin Granules Organelles in CHROMAFFIN CELLS located in the adrenal glands and various other organs. These granules are the site of the synthesis, storage, metabolism, and secretion of EPINEPHRINE and NOREPINEPHRINE. Chromaffin Granule,Granule, Chromaffin
D002838 Chromaffin System The cells of the body which stain with chromium salts. They occur along the sympathetic nerves, in the adrenal gland, and in various other organs. Argentaffin System,Argentaffin Systems,Chromaffin Systems,System, Argentaffin,System, Chromaffin,Systems, Argentaffin,Systems, Chromaffin
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D000302 Adrenal Cortex The outer layer of the adrenal gland. It is derived from MESODERM and comprised of three zones (outer ZONA GLOMERULOSA, middle ZONA FASCICULATA, and inner ZONA RETICULARIS) with each producing various steroids preferentially, such as ALDOSTERONE; HYDROCORTISONE; DEHYDROEPIANDROSTERONE; and ANDROSTENEDIONE. Adrenal cortex function is regulated by pituitary ADRENOCORTICOTROPIN. Cortex, Adrenal
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal

Related Publications

R Westermann, and M Johannsen, and K Unsicker, and C Grothe
March 1991, Journal of neurochemistry,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
September 1988, Brain research,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
April 1993, Brain research,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
August 2005, Nihon rinsho. Japanese journal of clinical medicine,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
January 1990, Journal of cell science. Supplement,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
August 1999, Nihon rinsho. Japanese journal of clinical medicine,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
November 1987, Investigative ophthalmology & visual science,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
January 2000, Acta oto-laryngologica. Supplementum,
R Westermann, and M Johannsen, and K Unsicker, and C Grothe
April 2009, Legal medicine (Tokyo, Japan),
Copied contents to your clipboard!