State and organization of polyoma virus DNA sequences in transformed rat cell lines. 1979

F Birg, and R Dulbecco, and M Fried, and R Kamen

Polyoma virus-transformed rat cell lines were isolated as colonies growing in agar after infection of F2408 cells with low multiplicities of wild-type virus. Viral DNA present in the transformed cells was analyzed by fractionating the cellular DNA on agarose gels before and after digestion with various restriction endonucleases, followed by detection of the DNA fragments containing viral sequences using the procedure described by Southern (E. Southern, J. Mol. Biol., 98:503--515, 1975). Five lines, independently derived, were studied in detail. All five lines, when examined after a minimum number of passages in culture, contained both free and apparently integrated viral DNA. The free polyoma DNA in three of the lines was indistinguishable, by restriction enzyme analysis, from wild-type viral DNA, whereas the two other lines also contained smaller free DNA molecules which lacked parts of the wild-type genome. The integrated DNA in the five lines studies existed as head-to-tail tandem repeats of unit-length polyoma DNA covalently attached to nonviral DNA. The same five polyoma-transformed rat lines were examined after further passage in culture. Free viral DNA was then either undetectable or greatly reduced in amounts, whereas the high-molecular-weight, integrated units persisted after passage of the cells. The subclones, derived from one of the five lines selected for detailed analysis, showed some variations in the quantity and size of the free viral DNA as well as minor alterations in the pattern of the apparently integrated sequences.

UI MeSH Term Description Entries
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D011120 Polyomavirus A genus of potentially oncogenic viruses of the family POLYOMAVIRIDAE. These viruses are normally present in their natural hosts as latent infections. The virus is oncogenic in hosts different from the species of origin. Bovine polyomavirus,Murine polyomavirus,Hamster polyomavirus,Polyoma Virus,Polyoma Viruses,Bovine polyomaviruses,Hamster polyomaviruses,Murine polyomaviruses,Polyomaviruses,Virus, Polyoma,Viruses, Polyoma,polyomavirus, Hamster,polyomaviruses, Bovine,polyomaviruses, Murine
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002471 Cell Transformation, Neoplastic Cell changes manifested by escape from control mechanisms, increased growth potential, alterations in the cell surface, karyotypic abnormalities, morphological and biochemical deviations from the norm, and other attributes conferring the ability to invade, metastasize, and kill. Neoplastic Transformation, Cell,Neoplastic Cell Transformation,Transformation, Neoplastic Cell,Tumorigenic Transformation,Cell Neoplastic Transformation,Cell Neoplastic Transformations,Cell Transformations, Neoplastic,Neoplastic Cell Transformations,Neoplastic Transformations, Cell,Transformation, Cell Neoplastic,Transformation, Tumorigenic,Transformations, Cell Neoplastic,Transformations, Neoplastic Cell,Transformations, Tumorigenic,Tumorigenic Transformations
D002472 Cell Transformation, Viral An inheritable change in cells manifested by changes in cell division and growth and alterations in cell surface properties. It is induced by infection with a transforming virus. Transformation, Viral Cell,Viral Cell Transformation,Cell Transformations, Viral,Transformations, Viral Cell,Viral Cell Transformations
D004262 DNA Restriction Enzymes Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1. Restriction Endonucleases,DNA Restriction Enzyme,Restriction Endonuclease,Endonuclease, Restriction,Endonucleases, Restriction,Enzymes, DNA Restriction,Restriction Enzyme, DNA,Restriction Enzymes, DNA
D004273 DNA, Neoplasm DNA present in neoplastic tissue. Neoplasm DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

F Birg, and R Dulbecco, and M Fried, and R Kamen
January 1980, Cold Spring Harbor symposia on quantitative biology,
F Birg, and R Dulbecco, and M Fried, and R Kamen
January 1984, Archives of virology,
F Birg, and R Dulbecco, and M Fried, and R Kamen
April 1968, Proceedings of the National Academy of Sciences of the United States of America,
F Birg, and R Dulbecco, and M Fried, and R Kamen
January 1983, The Journal of general virology,
F Birg, and R Dulbecco, and M Fried, and R Kamen
March 1976, Virology,
F Birg, and R Dulbecco, and M Fried, and R Kamen
June 1975, Virology,
F Birg, and R Dulbecco, and M Fried, and R Kamen
July 1980, Proceedings of the National Academy of Sciences of the United States of America,
F Birg, and R Dulbecco, and M Fried, and R Kamen
March 1969, International journal of cancer,
F Birg, and R Dulbecco, and M Fried, and R Kamen
April 1980, The Journal of biological chemistry,
F Birg, and R Dulbecco, and M Fried, and R Kamen
January 1976, Zeitschrift fur Naturforschung. Section C, Biosciences,
Copied contents to your clipboard!