Spin label studies on rat liver and heart plasma membranes: effects of temperature, calcium, and lanthanum on membrane fluidity. 1978

L M Gordon, and R D Sauerheber, and J A Esgate

The structures of rat liver and heart plasma membranes were studied with the 5-nitroxide stearic acid spin probe, I(12,3). The polarity-corrected order parameters (S) of liver and heart plasma membranes were independent of probe concentration only if experimentally determined low I(12,3)/lipid ratios were employed. At higher probe/lipid ratios, the order parameters of both membrane systems decreased with increasing probe concentration, and these effects were attributed to enhanced nitroxide radical interactions. Examination of the temperature dependence of approximate and polarity-corrected order parameters indicated that lipid phase separations occur in liver (between 19 degrees and 28 degrees C) and heart (between 21 degrees and 32 degrees C) plasma membranes. The possibility that a wide variety of membrane-associated functions may be influenced by these thermotropic phase separations is considered. Addition of 3.9 mM CaCl2 to I(12,3)-labeled liver plasma membrane decreased the fluidity as indicated by a 5% increase in S at 37 degrees C. Similarly, titrating I(12,3)-labeled heart plasma membranes with either CaCl2 or LaCl3 decreased the lipid fluidity at 37 degrees C, although the magnitude of the La3+ effect was larger and occurred at lower concentrations than that induced by Ca2+; addition of 0.2 mM La3+ or 3.2 mM Ca2+ increased S by approximately 7% and 5%, respectively. The above cation effects reflected only alterations in the membrane fluidity and were not due to changes in probe--probe interactions. Ca2+ and La3+ at these concentrations decrease the activities of such plasma membrane enzymes as Na+, K+-ATPase and adenylyl cyclase, and it is suggested that the inhibition of these enzymes may be due in part to cation-mediated decreases in the lipid fluidity.

UI MeSH Term Description Entries
D007811 Lanthanum The prototypical element in the rare earth family of metals. It has the atomic symbol La, atomic number 57, and atomic weight 138.91. Lanthanide ion is used in experimental biology as a calcium antagonist; lanthanum oxide improves the optical properties of glass.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013113 Spin Labels Molecules which contain an atom or a group of atoms exhibiting an unpaired electron spin that can be detected by electron spin resonance spectroscopy and can be bonded to another molecule. (McGraw-Hill Dictionary of Chemical and Technical Terms, 4th ed) Spin Label,Label, Spin,Labels, Spin
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

L M Gordon, and R D Sauerheber, and J A Esgate
March 1990, Biochimica et biophysica acta,
L M Gordon, and R D Sauerheber, and J A Esgate
January 1988, The International journal of biochemistry,
L M Gordon, and R D Sauerheber, and J A Esgate
June 1985, Toxicology letters,
L M Gordon, and R D Sauerheber, and J A Esgate
July 1994, Journal of inorganic biochemistry,
L M Gordon, and R D Sauerheber, and J A Esgate
July 1976, Biochimica et biophysica acta,
L M Gordon, and R D Sauerheber, and J A Esgate
January 1980, Advances in experimental medicine and biology,
L M Gordon, and R D Sauerheber, and J A Esgate
June 1980, Bollettino della Societa italiana di biologia sperimentale,
L M Gordon, and R D Sauerheber, and J A Esgate
January 1988, Hepatology (Baltimore, Md.),
Copied contents to your clipboard!