The actions of hormones on adenylate cyclase systems. 1978

M Rodbell

The glucagon-sensitive adenylate cyclase system, viewed from the perspective of its behavior with isolated membrane preparations, displays far more complex regulatory characteristics than could have been envisioned from its behavior in the intact cell. What has emerged from our studies with isolated hepatic membranes is that glucagon can exert at least three actions which we believe are interdependent: desentization of the receptor, activation of adenylate cyclase, and promotion of adenosine inhibition of adenylate cyclase activity. Although the molecular basis remains unknown, GTP is intimately involved in the three processes. Undoubtedly, further levels of complexity will develop when the enzyme system is dissected and its components become amenable to study at the molecular level. At the moment, it is clear that adenylate cyclase systems are provided with a plethora of regulatory processes for controlling cyclic AMP production both in the absence and presence of hormones.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D006150 Guanine Nucleotides Guanine Nucleotide,Guanosine Phosphates,Nucleotide, Guanine,Nucleotides, Guanine,Phosphates, Guanosine
D000067956 Adenylyl Cyclase Inhibitors Compounds that bind to and inhibit the action of ADENYLYL CYCLASES. Adenylate Cyclase Inhibitors,Cyclase Inhibitors, Adenylate,Cyclase Inhibitors, Adenylyl,Inhibitors, Adenylate Cyclase,Inhibitors, Adenylyl Cyclase
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP

Related Publications

M Rodbell
January 1978, Contributions to nephrology,
M Rodbell
December 1982, Biochemical Society transactions,
M Rodbell
January 1981, Advances in cyclic nucleotide research,
M Rodbell
December 1979, Molecular and cellular endocrinology,
M Rodbell
January 1984, Methods in enzymology,
M Rodbell
January 1974, Fortschritte der Zoologie,
Copied contents to your clipboard!