Intercalators promote the binding of RecA protein to double-stranded DNA. 1990

R J Thresher, and J D Griffith
Lineberger Cancer Research Center, University of North Carolina Medical School, Chapel Hill 27514.

Ethidium bromide, acridine orange, 4'-(9-acridinylamino)methanesulfon-o-anisidide (o-AMSA), and m-AMSA induce the rapid binding of RecA protein to double-stranded (ds) DNA. The filaments formed appear to retain the drug and are 12.8 nm in diameter with an 8.0-nm pitch. Two classes of drugs have been distinguished: (i) those that bind to RecA protein and induce assembly at low relative concentrations (e.g., ethidium bromide) and (ii) those that do not appear to interact directly with RecA protein and must be present at relatively high drug concentrations to stimulate assembly (e.g., m-AMSA). Ethidium bromide, acridine orange, and quinacrine inhibit RecA protein binding to single-stranded DNA. Addition of ATP to the drug-induced filaments causes the protein to rapidly dissociate from dsDNA, and protein binding to dsDNA diminishes upon extended exposure to room light. We suggest that the structure of the drug-induced filaments may be more typical of the complex that initiates RecA protein assembly along DNA rather than the product of extensive polymerization as induced by adenosine 5'-[gamma-thio]triphosphate.

UI MeSH Term Description Entries
D007364 Intercalating Agents Agents that are capable of inserting themselves between the successive bases in DNA, thus kinking, uncoiling or otherwise deforming it and therefore preventing its proper functioning. They are used in the study of DNA. Intercalating Agent,Intercalating Ligand,Intercalative Compound,Intercalator,Intercalators,Intercalating Ligands,Intercalative Compounds,Agent, Intercalating,Agents, Intercalating,Compound, Intercalative,Compounds, Intercalative,Ligand, Intercalating,Ligands, Intercalating
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011938 Rec A Recombinases A family of recombinases initially identified in BACTERIA. They catalyze the ATP-driven exchange of DNA strands in GENETIC RECOMBINATION. The product of the reaction consists of a duplex and a displaced single-stranded loop, which has the shape of the letter D and is therefore called a D-loop structure. Rec A Protein,RecA Protein,Recombinases, Rec A
D003090 Coliphages Viruses whose host is Escherichia coli. Escherichia coli Phages,Coliphage,Escherichia coli Phage,Phage, Escherichia coli,Phages, Escherichia coli
D004277 DNA, Single-Stranded A single chain of deoxyribonucleotides that occurs in some bacteria and viruses. It usually exists as a covalently closed circle. Single-Stranded DNA,DNA, Single Stranded,Single Stranded DNA
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D004996 Ethidium A trypanocidal agent and possible antiviral agent that is widely used in experimental cell biology and biochemistry. Ethidium has several experimentally useful properties including binding to nucleic acids, noncompetitive inhibition of nicotinic acetylcholine receptors, and fluorescence among others. It is most commonly used as the bromide. Ethidium Bromide,Homidium Bromide,Novidium,Bromide, Ethidium,Bromide, Homidium

Related Publications

R J Thresher, and J D Griffith
July 1993, The Journal of biological chemistry,
R J Thresher, and J D Griffith
January 1994, The Journal of biological chemistry,
R J Thresher, and J D Griffith
August 1981, The Journal of biological chemistry,
R J Thresher, and J D Griffith
March 1999, Journal of molecular biology,
R J Thresher, and J D Griffith
April 1986, Biochemical and biophysical research communications,
R J Thresher, and J D Griffith
January 1993, Nucleic acids symposium series,
R J Thresher, and J D Griffith
January 1989, Basic life sciences,
R J Thresher, and J D Griffith
October 1998, Proceedings of the National Academy of Sciences of the United States of America,
R J Thresher, and J D Griffith
October 2006, Journal of microbiology (Seoul, Korea),
Copied contents to your clipboard!