Analysis of human tumor associated Thomsen-Friedenreich antigen. 1990

J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
Department of Immunology, University of Alberta, Edmonton, Canada.

The Thomsen-Friedenrich (TF) antigen is a precursor structure of MN blood group antigens and is also expressed by about 90% of human carcinomas. The immunodominant group of TF antigen [beta-galactosyl(1-3)-alpha-N-acetylglactosamine] is present in cryptic form in normal RBC and is revealed by neuraminidase treatment. A murine monoclonal antibody (Mab 49H.8) developed against neuraminidase treated human RBC was reactive against a variety of human tumors. We have characterized the human tumor associated TF antigen detected by this antibody from a human transitional bladder carcinoma cell line (647V), a human colon adenocarcinoma cell line (LS174T), and a pleural effusion fluid of a breast adenocarcinoma patient (PE 89). A heterologous sandwich radioimmunoassay for TF antigen was developed using Mab 49H.8 as the catcher and 125I-peanut agglutinin as the probe. Detergent extracts of 647V and LS174T cells, media conditioned by culturing these cells, and PE 89 were shown to contain the antigen by this assay. The specificity of the antigen capture by Mab 49H.8 in this assay was demonstrated by its selective inhibition by nitrophenyl-beta-D-galactoside, phenyl-beta-D-galactoside, and a TF hapten. Preliminary studies on TF antigen in serum samples using this assay showed that about 53.7% of the carcinoma samples contained an antigen concentration greater than 200 units/ml whereas for 90.9% of the normal samples the antigen concentration was below 200 units/ml. These studies demonstrated that the TF antigen is shed by the tumor cells both in vitro and in vivo. The TF antigen was sensitive to treatment with alkali (0.1 M NaOH for 5 h at 37 degrees C) and periodate (10 mM sodium periodate for 1 h at room temperature), was resistant to acidic pH (50 mM acetate buffer, pH 4.5, for 5 h at 37 degrees C), and could be extracted with perchloric acid (0.6 M for 1 h at 4 degrees C). The antigen was shown to be a high molecular weight glycoprotein (Mr greater than 1,000,000) by gel filtration chromatography. The density of the antigen was estimated to be about 1.35 g/ml by cesium chloride density gradient centrifugation. The antigen could be isolated from conditioned media by a combination of affinity chromatography and gel filtration with an overall purification of about 61,432-fold and a final recovery of 53.2%.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D002850 Chromatography, Gel Chromatography on non-ionic gels without regard to the mechanism of solute discrimination. Chromatography, Exclusion,Chromatography, Gel Permeation,Chromatography, Molecular Sieve,Gel Filtration,Gel Filtration Chromatography,Chromatography, Size Exclusion,Exclusion Chromatography,Gel Chromatography,Gel Permeation Chromatography,Molecular Sieve Chromatography,Chromatography, Gel Filtration,Exclusion Chromatography, Size,Filtration Chromatography, Gel,Filtration, Gel,Sieve Chromatography, Molecular,Size Exclusion Chromatography
D004187 Disaccharides Oligosaccharides containing two monosaccharide units linked by a glycosidic bond. Disaccharide
D006241 Haptens Small antigenic determinants capable of eliciting an immune response only when coupled to a carrier. Haptens bind to antibodies but by themselves cannot elicit an antibody response. Hapten,Contact-Sensitizing Agents,Agents, Contact-Sensitizing,Contact Sensitizing Agents
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
January 2003, Advances in experimental medicine and biology,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
August 1990, Environmental health perspectives,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
January 2005, Anticancer research,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
January 1997, International journal of cancer,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
March 1985, Hinyokika kiyo. Acta urologica Japonica,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
May 1979, Klinische Wochenschrift,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
October 1982, Lancet (London, England),
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
July 2008, Carbohydrate research,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
September 2014, Journal of the American Chemical Society,
J Samuel, and A A Noujaim, and G D MacLean, and M R Suresh, and B M Longenecker
September 1982, Lancet (London, England),
Copied contents to your clipboard!