Site-directed mutagenesis of aspartic acid 372 at the ATP binding site of yeast phosphoglycerate kinase: over-expression and characterization of the mutant enzyme. 1990

P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
Department of Biochemistry, School of Medical Sciences, University of Bristol, UK.

A new phosphoglycerate kinase over-expression vector, pYE-PGK, has been constructed which greatly facilitates the insertion and removal of mutant enzyme genes by cleavage at newly introduced BamHI sites. This vector has been used to prepare mutant protein in appreciable (100 mg) quantities for use in kinetic, crystallographic and NMR experiments. Aspartate 372 is an invariant amino acid residue in genes known to code for a functionally active PGK. The function of this acidic residue appears to be to help desolvate the magnesium ion complexed with either ADP or ATP when this substrate binds to the enzyme. Both crystallographic and nuclear magnetic resonance experiments show that the replacement of the residue with asparagine has only minimal effects on the overall structure. The substitution of the charged carboxyl group with that of the neutral amide affects the binding of the nucleotide substrate as predicted but not, as might have been expected, the binding of 3-phosphoglycerate. The overall velocity of the enzymic reaction (Vmax) is reduced 10-fold by the substitution of aspartic acid 372 by an asparagine residue (D372N). This reduction in Vmax is considerably less than one would expect from its known position within the structure of the enzyme. This result therefore poses questions about our understanding of charged groups at the active centres of enzymes and of the reason for their apparent conservation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010735 Phosphoglycerate Kinase An enzyme catalyzing the transfer of a phosphate group from 3-phospho-D-glycerate in the presence of ATP to yield 3-phospho-D-glyceroyl phosphate and ADP. EC 2.7.2.3. Kinase, Phosphoglycerate
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid

Related Publications

P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
October 1989, Protein engineering,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
January 1987, The Biochemical journal,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
April 1993, FEBS letters,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
July 1989, European journal of biochemistry,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
February 1999, European journal of biochemistry,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
April 1978, Biochimica et biophysica acta,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
December 1989, FEBS letters,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
January 1995, Physiological chemistry and physics and medical NMR,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
January 1991, Advances in experimental medicine and biology,
P Minard, and D J Bowen, and L Hall, and J A Littlechild, and H C Watson
October 1982, Nature,
Copied contents to your clipboard!