Refinement of long-term toxicity and carcinogenesis studies. 1990

G N Rao, and J Huff
National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709.

The chance that alternatives will completely replace animals for toxicology research in the foreseeable future is nil. Continual refinement of animal toxicity and carcinogenesis studies, however, can be an effective means of reducing the numbers of animals used and conserving time and resources without compromising scientific quality. We must continue to strive to find species and strains that can metabolize chemicals similar to humans, are small enough to be housed in large numbers, and have low prevalence of spontaneous lesions with sufficient life span to express the toxic and carcinogenic potential of chemicals. Adequate care of animals with control of variables such as light, temperature, diet, bedding, diseases, and genetic characters of laboratory animals will decrease the variability. Humane considerations and euthanasia of animals with large masses and other conditions interfering with eating and drinking, major injuries and ulcers related to husbandry and treatment, and diseases indicating pain and suffering will help not only to alleviate further pain and distress but also to facilitate collection of tissues without secondary complications for detection of chemical treatment-related lesions. Limiting the duration of studies to decrease the variability due to age-associated changes will also refine long-term studies. Other considerations for refinement of carcinogenesis studies include selection of the most sensitive sex of one or more species for evaluation of selected chemicals in a class where toxic and carcinogenic potential of other representative chemicals are known. Genetically engineered animal models with known oncogenes may reduce the duration and increase the sensitivity of carcinogenesis studies with a reduction in the use of animals.

UI MeSH Term Description Entries
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000822 Animal Husbandry The science of breeding, feeding and care of domestic animals; includes housing and nutrition. Animal Husbandries,Husbandries, Animal,Husbandry, Animal
D000826 Animal Testing Alternatives Procedures, such as TISSUE CULTURE TECHNIQUES; mathematical models; etc., when used or advocated for use in place of the use of animals in research or diagnostic laboratories. Alternatives to Animal Testing,Alternative, Animal Testing,Alternatives, Animal Testing,Animal Testing Alternative,Testing Alternative, Animal,Testing Alternatives, Animal
D000830 Animals, Laboratory Animals used or intended for use in research, testing, or teaching. Laboratory Animals,Animal, Laboratory,Laboratory Animal
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D015197 Carcinogenicity Tests Tests to experimentally measure the tumor-producing/cancer cell-producing potency of an agent by administering the agent (e.g., benzanthracenes) and observing the quantity of tumors or the cell transformation developed over a given period of time. The carcinogenicity value is usually measured as milligrams of agent administered per tumor developed. Though this test differs from the DNA-repair and bacterial microsome MUTAGENICITY TESTS, researchers often attempt to correlate the finding of carcinogenicity values and mutagenicity values. Tumorigenicity Tests,Carcinogen Tests,Carcinogenesis Tests,Carcinogenic Activity Tests,Carcinogenic Potency Tests,Carcinogen Test,Carcinogenesis Test,Carcinogenic Activity Test,Carcinogenic Potency Test,Carcinogenicity Test,Potency Test, Carcinogenic,Potency Tests, Carcinogenic,Test, Carcinogen,Test, Carcinogenesis,Test, Carcinogenic Activity,Test, Carcinogenic Potency,Test, Carcinogenicity,Test, Tumorigenicity,Tests, Carcinogen,Tests, Carcinogenesis,Tests, Carcinogenic Activity,Tests, Carcinogenic Potency,Tests, Carcinogenicity,Tests, Tumorigenicity,Tumorigenicity Test

Related Publications

G N Rao, and J Huff
April 1991, Fundamental and applied toxicology : official journal of the Society of Toxicology,
G N Rao, and J Huff
April 1982, Fortschritte der Medizin,
G N Rao, and J Huff
January 1994, Environmental health perspectives,
G N Rao, and J Huff
January 1992, Scandinavian journal of work, environment & health,
G N Rao, and J Huff
October 1974, Food and cosmetics toxicology,
G N Rao, and J Huff
July 1971, Experientia,
G N Rao, and J Huff
June 1975, Food and cosmetics toxicology,
Copied contents to your clipboard!