| D008214 |
Lymphocytes |
White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. |
Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell |
|
| D008264 |
Macrophages |
The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) |
Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage |
|
| D009369 |
Neoplasms |
New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. |
Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant |
|
| D002999 |
Clone Cells |
A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) |
Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D006825 |
Hybridomas |
Cells artificially created by fusion of activated lymphocytes with neoplastic cells. The resulting hybrid cells are cloned and produce pure MONOCLONAL ANTIBODIES or T-cell products, identical to those produced by the immunologically competent parent cell. |
Hybridoma |
|
| D000818 |
Animals |
Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. |
Animal,Metazoa,Animalia |
|
| D000911 |
Antibodies, Monoclonal |
Antibodies produced by a single clone of cells. |
Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal |
|
| D000921 |
Antibody-Producing Cells |
Cells of the lymphoid series that can react with antigen to produce specific cell products called antibodies. Various cell subpopulations, often B-lymphocytes, can be defined, based on the different classes of immunoglobulins that they synthesize. |
Antibody-Producing Cell,Antibody-Secreting Cell,Antibody-Secreting Cells,Immunoglobulin-Producing Cells,Immunoglobulin-Secreting Cells,Antibody Producing Cell,Antibody Producing Cells,Antibody Secreting Cell,Antibody Secreting Cells,Cell, Antibody-Producing,Cell, Antibody-Secreting,Cell, Immunoglobulin-Producing,Cell, Immunoglobulin-Secreting,Cells, Antibody-Producing,Cells, Antibody-Secreting,Cells, Immunoglobulin-Producing,Cells, Immunoglobulin-Secreting,Immunoglobulin Producing Cells,Immunoglobulin Secreting Cells,Immunoglobulin-Producing Cell,Immunoglobulin-Secreting Cell |
|
| D001709 |
Biotechnology |
Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. |
Biotechnologies |
|