Genetic and behavioral analysis of flagellar switch mutants of Salmonella typhimurium. 1990

Y Magariyama, and S Yamaguchi, and S Aizawa
ERATO, Research and Development Corporation of Japan, Ibaraki.

At the interface between the sensory transduction system and the flagellar motor system of Salmonella typhimurium, the switch complex plays an important role in both sensory transduction and energy transduction. To examine the function of the switch complex, we isolated from 10 cheY mutants 500 pseudorevertants with a suppressor mutation in one of the three genes (fliG, fliM, and fliN) encoding the switch complex. Detailed mapping revealed that these suppressor mutations were localized to several segments of each switch gene, suggesting localization of functional sites on the switch complex. These switch mutations were introduced into the wild-type background and into a chemotaxis deletion background. Behavior of the pseudorevertants and their derivatives (1,500 strains in all) was observed by light microscopy. In the chemotaxis deletion background, about 70% of the switch mutants showed smooth swimming and the rest showed more or less tumbly swimming. There was some correlation between the mutational sites and the swimming patterns in the chemotaxis deletion background, suggesting that there is segregation of functional sites on the switch complex. The interaction of the switch complex with the chemotaxis protein, CheY, and the stochastic nature of switching in the absence of CheY are discussed.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D002876 Chromosomes, Bacterial Structures within the nucleus of bacterial cells consisting of or containing DNA, which carry genetic information essential to the cell. Bacterial Chromosome,Bacterial Chromosomes,Chromosome, Bacterial
D005407 Flagella A whiplike motility appendage present on the surface cells. Prokaryote flagella are composed of a protein called FLAGELLIN. Bacteria can have a single flagellum, a tuft at one pole, or multiple flagella covering the entire surface. In eukaryotes, flagella are threadlike protoplasmic extensions used to propel flagellates and sperm. Flagella have the same basic structure as CILIA but are longer in proportion to the cell bearing them and present in much smaller numbers. (From King & Stansfield, A Dictionary of Genetics, 4th ed) Flagellum
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D012486 Salmonella typhimurium A serotype of Salmonella enterica that is a frequent agent of Salmonella gastroenteritis in humans. It also causes PARATYPHOID FEVER. Salmonella typhimurium LT2

Related Publications

Y Magariyama, and S Yamaguchi, and S Aizawa
May 2000, Journal of molecular biology,
Y Magariyama, and S Yamaguchi, and S Aizawa
March 1990, Journal of bacteriology,
Y Magariyama, and S Yamaguchi, and S Aizawa
February 1992, Journal of bacteriology,
Y Magariyama, and S Yamaguchi, and S Aizawa
December 1996, Journal of bacteriology,
Y Magariyama, and S Yamaguchi, and S Aizawa
August 1996, Journal of bacteriology,
Y Magariyama, and S Yamaguchi, and S Aizawa
September 1965, Genetics,
Y Magariyama, and S Yamaguchi, and S Aizawa
June 1967, Genetics,
Y Magariyama, and S Yamaguchi, and S Aizawa
February 1978, Journal of bacteriology,
Y Magariyama, and S Yamaguchi, and S Aizawa
August 1995, Journal of molecular biology,
Y Magariyama, and S Yamaguchi, and S Aizawa
June 1989, Journal of bacteriology,
Copied contents to your clipboard!