Location of a P1 plasmid replication inhibitor determinant within the initiator gene. 1990

K Muraiso, and G Mukhopadhyay, and D K Chattoraj
Laboratory of Biochemistry, National Cancer Institute, Bethesda, Maryland 20892.

The P1 plasmid replication initiator protein, RepA, binds to its own promoter and represses transcription efficiently. There are only about 20 RepA dimers present per repA gene. A possible reason for this highly restrained expression became evident when repA expression was increased by using foreign promoters: with fivefold overexpression, the replication rate was diminished, and with 40-fold overexpression, replication was not detectable. The inhibition was P1 specific: growth of Escherichia coli and replication of pSC101, R6K, and mini-F plasmids were not affected. The activity is apparently not from RepA itself. Excess purified RepA did not inhibit replication in vitro. Mutations of the repA translation initiation codon reduced synthesis of the initiator but not the inhibitory activity. Deletion from either the N- or C-terminal ends of repA (28 and 69 codons, respectively, out of the 286-codon open reading frame) affected the initiator but not the inhibitory activity. Further deletions affected both the activities. These results demonstrate that the integrity of the initiator is not required for inhibition, but involvement of an unstable initiator fragment or of initiator mRNA cannot be ruled out.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011533 Proviruses Duplex DNA sequences in eukaryotic chromosomes, corresponding to the genome of a virus, that are transmitted from one cell generation to the next without causing lysis of the host. Proviruses are often associated with neoplastic cell transformation and are key features of retrovirus biology. Provirus
D012093 Replicon Any DNA sequence capable of independent replication or a molecule that possesses a REPLICATION ORIGIN and which is therefore potentially capable of being replicated in a suitable cell. (Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Replication Unit,Replication Units,Replicons,Unit, Replication,Units, Replication
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D003062 Codon A set of three nucleotides in a protein coding sequence that specifies individual amino acids or a termination signal (CODON, TERMINATOR). Most codons are universal, but some organisms do not produce the transfer RNAs (RNA, TRANSFER) complementary to all codons. These codons are referred to as unassigned codons (CODONS, NONSENSE). Codon, Sense,Sense Codon,Codons,Codons, Sense,Sense Codons

Related Publications

K Muraiso, and G Mukhopadhyay, and D K Chattoraj
June 2000, Proceedings of the National Academy of Sciences of the United States of America,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
August 1987, Journal of bacteriology,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
January 1994, Nucleic acids research,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
November 1986, Journal of molecular biology,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
August 1988, Journal of bacteriology,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
May 1994, The EMBO journal,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
December 1993, The EMBO journal,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
May 1993, Journal of molecular biology,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
March 1984, Journal of molecular biology,
K Muraiso, and G Mukhopadhyay, and D K Chattoraj
August 1981, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!