Granulocyte-macrophage colony-stimulating factor in human immunodeficiency virus disease. 1990

J E Groopman
Division of Hematology/Oncology, New England Deaconess Hospital, Harvard Medical School, Boston, MA 02150.

Factors contributing to the development of cytopenias in patients with advanced human immunodeficiency virus (HIV) disease include primary HIV-related suppression of blood cell production, opportunistic infections and neoplasms that directly involve the marrow cavity, and the toxicity of antiviral, antiinfective, and antineoplastic therapy. Indeed, bone marrow toxicity is often the complication limiting delivery of effective therapy in such patients. Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to increase the leukocyte count in this patient population. Although there is concern that GM-CSF administration may increase HIV replication in myeloid cells, this effect has not been observed in clinical studies. In addition, the most appropriate use of hematopoietic growth factors would be in combination with effective antiretroviral agents, such as zidovudine. A pharmacologic basis for such combination is provided by the finding that inhibition of HIV by zidovudine may be augmented by GM-CSF. It recently has been shown that patients with severe leukopenia and intolerance to zidovudine can have reconstitution of effective myelopoiesis with low doses of subcutaneously self-administered GM-CSF and become hematologically tolerant of zidovudine 1,200 mg/d. The major adverse effects of this combination regimen were constitutional symptoms and thrombocytopenia. Further investigation of GM-CSF and other hematopoietic growth factors in this patient population is warranted.

UI MeSH Term Description Entries
D007165 Immunosuppression Therapy Deliberate prevention or diminution of the host's immune response. It may be nonspecific as in the administration of immunosuppressive agents (drugs or radiation) or by lymphocyte depletion or may be specific as in desensitization or the simultaneous administration of antigen and immunosuppressive drugs. Antirejection Therapy,Immunosuppression,Immunosuppressive Therapy,Anti-Rejection Therapy,Therapy, Anti-Rejection,Therapy, Antirejection,Anti Rejection Therapy,Anti-Rejection Therapies,Antirejection Therapies,Immunosuppression Therapies,Immunosuppressions,Immunosuppressive Therapies,Therapies, Immunosuppression,Therapies, Immunosuppressive,Therapy, Immunosuppression,Therapy, Immunosuppressive
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000163 Acquired Immunodeficiency Syndrome An acquired defect of cellular immunity associated with infection by the human immunodeficiency virus (HIV), a CD4-positive T-lymphocyte count under 200 cells/microliter or less than 14% of total lymphocytes, and increased susceptibility to opportunistic infections and malignant neoplasms. Clinical manifestations also include emaciation (wasting) and dementia. These elements reflect criteria for AIDS as defined by the CDC in 1993. AIDS,Immunodeficiency Syndrome, Acquired,Immunologic Deficiency Syndrome, Acquired,Acquired Immune Deficiency Syndrome,Acquired Immuno-Deficiency Syndrome,Acquired Immuno Deficiency Syndrome,Acquired Immuno-Deficiency Syndromes,Acquired Immunodeficiency Syndromes,Immuno-Deficiency Syndrome, Acquired,Immuno-Deficiency Syndromes, Acquired,Immunodeficiency Syndromes, Acquired,Syndrome, Acquired Immuno-Deficiency,Syndrome, Acquired Immunodeficiency,Syndromes, Acquired Immuno-Deficiency,Syndromes, Acquired Immunodeficiency
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016178 Granulocyte-Macrophage Colony-Stimulating Factor An acidic glycoprotein of MW 23 kDa with internal disulfide bonds. The protein is produced in response to a number of inflammatory mediators by mesenchymal cells present in the hemopoietic environment and at peripheral sites of inflammation. GM-CSF is able to stimulate the production of neutrophilic granulocytes, macrophages, and mixed granulocyte-macrophage colonies from bone marrow cells and can stimulate the formation of eosinophil colonies from fetal liver progenitor cells. GM-CSF can also stimulate some functional activities in mature granulocytes and macrophages. CSF-GM,Colony-Stimulating Factor, Granulocyte-Macrophage,GM-CSF,Histamine-Producing Cell-Stimulating Factor,CSF-2,TC-GM-CSF,Tumor-Cell Human GM Colony-Stimulating Factor,Cell-Stimulating Factor, Histamine-Producing,Colony Stimulating Factor, Granulocyte Macrophage,Granulocyte Macrophage Colony Stimulating Factor,Histamine Producing Cell Stimulating Factor,Tumor Cell Human GM Colony Stimulating Factor

Related Publications

J E Groopman
January 1998, International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases,
J E Groopman
January 1989, Biotechnology therapeutics,
J E Groopman
January 1990, Immunology series,
J E Groopman
January 1990, Biotherapy (Dordrecht, Netherlands),
J E Groopman
July 2010, Nihon rinsho. Japanese journal of clinical medicine,
Copied contents to your clipboard!