Exchangeability and rate of flip-flop of phosphatidylcholine in large unilamellar vesicles, cholate dialysis vesicles, and cytochrome oxidase vesicles. 1979

P E Dicorleto, and D B Zilversmit

Three model membrane systems have been characterized in terms of their interaction with phospholipid exchange proteins. Large unilamellar vesicles of phosphatidylcholine prepared by ether vaporization are shown to be homogeneous by gel filtration. Phospholipid exchange proteins from three sources are capable of catalyzing the rapid exchange of approximately half of the phospholipid from these vesicles. The remaining pool of radioactive phospholipid is virtually nonexchangeable (t1/2 of several days). Small unilamellar vesicles of phosphatidylcholine prepared by cholate dialysis also exhibit two pools of phospholipid (65% rapidly exchangable, 35% very slowly exchangeable) when incubated with beef liver phospholipid exchange protein. Cytochrome oxidase vesicles prepared both by a cholate dialysis method and by a direct incorporation method have been fractionated on a Ficoll discontinuous gradient, and tested for interaction with beef heart exchange protein. Two pools of phospholipid are once again observed (70% rapidly exchangable, 30% nonexchangeable), even for vesicles which have incorporated the transmembranous enzyme at a phospholipid to protein weight ratio of 2. The size of the rapidly exchangeable pool of phosphatidylcholine for each of the vesicle systems is consistent with the calculated fraction of phospholipid in the outer monolayer. The extremely slow rate of exchange of the second pool of the second pool of phospholipid reflects the virtual nonexistence of phospholipid flip-flop in any of these model membranes.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008567 Membranes, Artificial Artificially produced membranes, such as semipermeable membranes used in artificial kidney dialysis (RENAL DIALYSIS), monomolecular and bimolecular membranes used as models to simulate biological CELL MEMBRANES. These membranes are also used in the process of GUIDED TISSUE REGENERATION. Artificial Membranes,Artificial Membrane,Membrane, Artificial
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D002621 Chemistry A basic science concerned with the composition, structure, and properties of matter; and the reactions that occur between substances and the associated energy exchange.
D002793 Cholic Acids The 3 alpha,7 alpha,12 alpha-trihydroxy-5 beta-cholanic acid family of bile acids in man, usually conjugated with glycine or taurine. They act as detergents to solubilize fats for intestinal absorption, are reabsorbed by the small intestine, and are used as cholagogues and choleretics. Cholalic Acids,Acids, Cholalic,Acids, Cholic
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical

Related Publications

P E Dicorleto, and D B Zilversmit
August 1982, FEBS letters,
P E Dicorleto, and D B Zilversmit
February 1985, Biochemistry,
P E Dicorleto, and D B Zilversmit
September 1986, Biochemistry,
P E Dicorleto, and D B Zilversmit
June 1980, Biochimica et biophysica acta,
P E Dicorleto, and D B Zilversmit
June 1993, Biochimica et biophysica acta,
P E Dicorleto, and D B Zilversmit
December 2013, The journal of physical chemistry. B,
P E Dicorleto, and D B Zilversmit
July 1989, Biochimica et biophysica acta,
P E Dicorleto, and D B Zilversmit
February 1990, Chemistry and physics of lipids,
Copied contents to your clipboard!