Interleukin-6 production by tumor necrosis factor and lipopolysaccharide-stimulated rat renal cells. 1990

E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
IHB Research Laboratories, Les Ulis, France.

Interleukin-6 (IL-6) is produced by various cell types, including monocytes, fibroblasts, and endothelial cells. IL-6 has also been detected in the urine of normal and renal transplant patients. Thus, the possible production of this cytokine by glomeruli and mesangial cells was investigated. Rat glomeruli were obtained by serial sieving of cortical homogenates of blood-free kidneys. Mesangial cells were obtained from the glomeruli and cultured under standard methods in RPMI 1640 medium containing 15% fetal calf serum. Glomeruli or confluent monolayers cells were then incubated in RPMI 1640 for 18 hr, in the presence or not of tumor necrosis factor-alpha (TNF alpha), lipopolysaccharide (LPS), or platelet-activating factor (PAF). IL-6 activity was measured using the IL-6-dependent cell line subclone (B 9-9) and expressed with respect to a standard curve established with recombinant IL-6. Glomeruli generate IL-6 upon TNF alpha (100 ng/ml) and LPS (1 microgram/ml), 11,500 +/- 3000 and 22,000 +/- 7500 U/ml, respectively. Nonstimulated mesangial cells produced 50 +/- 5 U/ml (mean +/- SEM, n = 4) of IL-6. TNF alpha (1 ng/ml) and LPS (1 microgram/ml) induced the production of 800 +/- 90 and 40,000 +/- 5000 U/ml, respectively (n = 4). In contrast, PAF (0.1 nM-1 microM) did not increase IL-6 production from glomeruli or mesangial cells. These results demonstrate that renal cells spontaneously generate minimal amounts of IL-6 and that this production is significantly increased by TNF alpha or LPS. A synergy between LPS and TNF alpha was induced in glomerular cells with 10 ng/ml of TNF alpha and graded concentrations of LPS. Thus, the production of IL-6 by glomerular cells and its modulation by other cytokines or endotoxins may play a role in the local immunological processes leading to immune glomerular diseases.

UI MeSH Term Description Entries
D007158 Immunologic Techniques Techniques used to demonstrate or measure an immune response, and to identify or measure antigens using antibodies. Antibody Dissociation,Immunologic Technic,Immunologic Technics,Immunologic Technique,Immunological Technics,Immunological Techniques,Technic, Immunologic,Technics, Immunologic,Technique, Immunologic,Techniques, Immunologic,Antibody Dissociations,Dissociation, Antibody,Dissociations, Antibody,Immunological Technic,Immunological Technique,Technic, Immunological,Technics, Immunological,Technique, Immunological,Techniques, Immunological
D007678 Kidney Glomerulus A cluster of convoluted capillaries beginning at each nephric tubule in the kidney and held together by connective tissue. Glomerulus, Kidney
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005920 Glomerular Mesangium The thin membranous structure supporting the adjoining glomerular capillaries. It is composed of GLOMERULAR MESANGIAL CELLS and their EXTRACELLULAR MATRIX. Mesangium, Glomerular,Mesangial Extracellular Matrix,Extracellular Matrices, Mesangial,Extracellular Matrix, Mesangial,Glomerular Mesangiums,Matrices, Mesangial Extracellular,Matrix, Mesangial Extracellular,Mesangial Extracellular Matrices,Mesangiums, Glomerular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014409 Tumor Necrosis Factor-alpha Serum glycoprotein produced by activated MACROPHAGES and other mammalian MONONUCLEAR LEUKOCYTES. It has necrotizing activity against tumor cell lines and increases ability to reject tumor transplants. Also known as TNF-alpha, it is only 30% homologous to TNF-beta (LYMPHOTOXIN), but they share TNF RECEPTORS. Cachectin,TNF-alpha,Tumor Necrosis Factor Ligand Superfamily Member 2,Cachectin-Tumor Necrosis Factor,TNF Superfamily, Member 2,TNFalpha,Tumor Necrosis Factor,Cachectin Tumor Necrosis Factor,Tumor Necrosis Factor alpha
D015850 Interleukin-6 A cytokine that stimulates the growth and differentiation of B-LYMPHOCYTES and is also a growth factor for HYBRIDOMAS and plasmacytomas. It is produced by many different cells including T-LYMPHOCYTES; MONOCYTES; and FIBROBLASTS. Hepatocyte-Stimulating Factor,Hybridoma Growth Factor,IL-6,MGI-2,Myeloid Differentiation-Inducing Protein,Plasmacytoma Growth Factor,B Cell Stimulatory Factor-2,B-Cell Differentiation Factor,B-Cell Differentiation Factor-2,B-Cell Stimulatory Factor 2,B-Cell Stimulatory Factor-2,BSF-2,Differentiation Factor, B-Cell,Differentiation Factor-2, B-Cell,IFN-beta 2,IL6,Interferon beta-2,B Cell Differentiation Factor,B Cell Differentiation Factor 2,B Cell Stimulatory Factor 2,Differentiation Factor 2, B Cell,Differentiation Factor, B Cell,Differentiation-Inducing Protein, Myeloid,Growth Factor, Hybridoma,Growth Factor, Plasmacytoma,Hepatocyte Stimulating Factor,Interferon beta 2,Interleukin 6,Myeloid Differentiation Inducing Protein,beta-2, Interferon
D046508 Culture Techniques Methods of maintaining or growing biological materials in controlled laboratory conditions. These include the cultures of CELLS; TISSUES; organs; or embryo in vitro. Both animal and plant tissues may be cultured by a variety of methods. Cultures may derive from normal or abnormal tissues, and consist of a single cell type or mixed cell types. Culture Technique,Technique, Culture,Techniques, Culture

Related Publications

E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
April 1998, Pharmacology,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
October 1995, The Journal of infectious diseases,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
June 1994, Alcoholism, clinical and experimental research,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
April 2008, Innate immunity,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
October 1992, Gastroenterologia Japonica,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
May 1994, Infection and immunity,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
December 1998, Veterinary immunology and immunopathology,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
January 1996, Journal of clinical & laboratory immunology,
E Pirotzky, and R M Delattre, and A Hellegouarch, and M O Lonchampt, and L Aarden, and P Braquet, and P Galanaud
June 1992, European journal of immunology,
Copied contents to your clipboard!