Interferon-inducible antiviral protein MxA enhances cell death triggered by endoplasmic reticulum stress. 2011

Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Japan.

Human myxovirus resistance gene A (MxA) is a type I interferon-inducible protein and exhibits the antiviral activity against a variety of RNA viruses, including influenza virus. Previously, we reported that MxA accelerates cell death of influenza virus-infected cells through caspase-dependent and -independent mechanisms. Similar to other viruses, influenza virus infection induces endoplasmic reticulum (ER) stress, which is one of cell death inducers. Here, we have demonstrated that MxA enhances ER stress signaling in cells infected with influenza virus. ER stress-induced events, such as expression of BiP mRNA and processing of XBP1 mRNA, were upregulated in cells expressing MxA by treatment with an ER stress inducer, tunicamycin (TM), as well as influenza virus infection. TM-induced cell death was also accelerated by MxA. Furthermore, we showed that MxA interacts with BiP and overexpression of BiP reduces MxA-promoted ER stress signaling. Because cell death in virus-infected cells is one of ultimate anti-virus mechanisms, we propose that MxA-enhanced ER stress signaling is a part of the antiviral activity of MxA by accelerating cell death.

UI MeSH Term Description Entries
D007251 Influenza, Human An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia. Grippe,Human Flu,Human Influenza,Influenza in Humans,Influenza,Flu, Human,Human Influenzas,Influenza in Human,Influenzas,Influenzas, Human
D009980 Influenza A virus The type species of the genus ALPHAINFLUENZAVIRUS that causes influenza and other diseases in humans and animals. Antigenic variation occurs frequently between strains, allowing classification into subtypes and variants. Transmission is usually by aerosol (human and most non-aquatic hosts) or waterborne (ducks). Infected birds shed the virus in their saliva, nasal secretions, and feces. Alphainfluenzavirus influenzae,Avian Orthomyxovirus Type A,FLUAV,Fowl Plague Virus,Human Influenza A Virus,Influenza Virus Type A,Influenza Viruses Type A,Myxovirus influenzae-A hominis,Myxovirus influenzae-A suis,Myxovirus pestis galli,Orthomyxovirus Type A,Orthomyxovirus Type A, Avian,Orthomyxovirus Type A, Human,Orthomyxovirus Type A, Porcine,Pestis galli Myxovirus,Fowl Plague Viruses,Influenza A viruses,Myxovirus influenzae A hominis,Myxovirus influenzae A suis,Myxovirus, Pestis galli,Myxoviruses, Pestis galli,Pestis galli Myxoviruses,Plague Virus, Fowl,Virus, Fowl Plague
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014415 Tunicamycin An N-acetylglycosamine containing antiviral antibiotic obtained from Streptomyces lysosuperificus. It is also active against some bacteria and fungi, because it inhibits the glucosylation of proteins. Tunicamycin is used as tool in the study of microbial biosynthetic mechanisms.
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D057809 HEK293 Cells A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5. 293T Cells,HEK 293 Cell Line,HEK 293 Cells,Human Embryonic Kidney Cell Line 293,Human Kidney Cell Line 293,293 Cell, HEK,293 Cells, HEK,293T Cell,Cell, 293T,Cell, HEK 293,Cell, HEK293,Cells, 293T,Cells, HEK 293,Cells, HEK293,HEK 293 Cell,HEK293 Cell

Related Publications

Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
September 2006, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
July 2016, The FEBS journal,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
April 2002, The Journal of biological chemistry,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
January 2019, Oxidative medicine and cellular longevity,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
December 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
June 2002, Genes & development,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
July 2000, The Journal of biological chemistry,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
June 2006, Diabetologia,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
January 2022, Oncogene,
Akiko Numajiri Haruki, and Tadasuke Naito, and Tomomi Nishie, and Shoko Saito, and Kyosuke Nagata
January 1998, European journal of biochemistry,
Copied contents to your clipboard!