TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae. 1990

C H Ko, and A M Buckley, and R F Gaber
Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208.

TRK1, the gene encoding the high affinity K+ transporter in Saccharomyces cerevisiae, is nonessential due to the existence of a functionally independent low affinity transporter. To identify the gene(s) encoding the low affinity K+ transporter, we screened trk1 delta cells for mutants (Kla-) that require higher concentrations of K+ in the medium to support growth. trk1 delta trk2 mutants require up to tenfold higher concentrations of K+ to exhibit normal growth compared to trk1 delta TRK2 cells. K+ and 86Rb+ transport assays demonstrate that the mutant phenotype is due to defective K+ transport (uptake). Each of 38 independent mutants contains a mutation in the same gene, TRK2. Cells deficient for both high and low affinity K+ transport (trk1 delta trk2) exhibit hypersensitivity to low extracellular pH that can be suppressed by high concentrations of K+ but not Na+. TRK1 completely suppresses both the K+ transport defect and low pH hypersensitivity of trk2 cells, suggesting that TRK1 and TRK2 are functionally independent.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D005800 Genes, Fungal The functional hereditary units of FUNGI. Fungal Genes,Fungal Gene,Gene, Fungal
D006863 Hydrogen-Ion Concentration The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH pH,Concentration, Hydrogen-Ion,Concentrations, Hydrogen-Ion,Hydrogen Ion Concentration,Hydrogen-Ion Concentrations
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

C H Ko, and A M Buckley, and R F Gaber
January 1994, Journal of bacteriology,
C H Ko, and A M Buckley, and R F Gaber
April 1987, Journal of bacteriology,
C H Ko, and A M Buckley, and R F Gaber
November 1990, Molecular and cellular biology,
C H Ko, and A M Buckley, and R F Gaber
August 1991, Molecular and cellular biology,
C H Ko, and A M Buckley, and R F Gaber
May 1992, Journal of bacteriology,
C H Ko, and A M Buckley, and R F Gaber
September 2007, Genetics,
C H Ko, and A M Buckley, and R F Gaber
July 1988, Molecular and cellular biology,
C H Ko, and A M Buckley, and R F Gaber
July 1996, Microbiology (Reading, England),
C H Ko, and A M Buckley, and R F Gaber
November 1988, Journal of bacteriology,
Copied contents to your clipboard!