The molecular cloning and identification of a gene product specifically required for nuclear movement in Aspergillus nidulans. 1990

A H Osmani, and S A Osmani, and N R Morris
Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway 08854.

A temperature-sensitive mutation in the nudC gene (nudC3) of Aspergillus nidulans specifically prevents the microtubule-based movement of nuclei in this organism at the restrictive temperature. The mutation does not affect short term growth, nuclear division, or the movement of other subcellular organelles. Immunofluorescence analysis of cells blocked at the restrictive temperature, using antitubulin antibodies, shows that the inability of nuclei to move under these conditions is not related to an inability of a particular class of microtubule to form. The inability to move nuclei in this mutant is also shown to be independent of both mitosis and the number of nuclei in the cell as a double mutant carrying both nudC3 and a cell cycle-specific mutation blocks with a single immotile nucleus at the restrictive temperature. The molecular cloning of the nudC gene and sequence analysis reveal that it encodes a previously unidentified protein of 22 kd. Affinity-purified antisera reactive to the nudC protein cross reacts to a single protein of 22 kD in Aspergillus protein extracts. This purified sera failed to reveal a subcellular location for the nudC protein at the level of indirect immunofluorescence. The data presented suggest that the 22-kD nudC gene product functions by interacting between microtubules and nuclei and/or is involved in the generation of force used to move nuclei during interphase.

UI MeSH Term Description Entries
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005455 Fluorescent Antibody Technique Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy. Antinuclear Antibody Test, Fluorescent,Coon's Technique,Fluorescent Antinuclear Antibody Test,Fluorescent Protein Tracing,Immunofluorescence Technique,Coon's Technic,Fluorescent Antibody Technic,Immunofluorescence,Immunofluorescence Technic,Antibody Technic, Fluorescent,Antibody Technics, Fluorescent,Antibody Technique, Fluorescent,Antibody Techniques, Fluorescent,Coon Technic,Coon Technique,Coons Technic,Coons Technique,Fluorescent Antibody Technics,Fluorescent Antibody Techniques,Fluorescent Protein Tracings,Immunofluorescence Technics,Immunofluorescence Techniques,Protein Tracing, Fluorescent,Protein Tracings, Fluorescent,Technic, Coon's,Technic, Fluorescent Antibody,Technic, Immunofluorescence,Technics, Fluorescent Antibody,Technics, Immunofluorescence,Technique, Coon's,Technique, Fluorescent Antibody,Technique, Immunofluorescence,Techniques, Fluorescent Antibody,Techniques, Immunofluorescence,Tracing, Fluorescent Protein,Tracings, Fluorescent Protein

Related Publications

A H Osmani, and S A Osmani, and N R Morris
August 2005, Biochimica et biophysica acta,
A H Osmani, and S A Osmani, and N R Morris
April 2002, Molecular genetics and genomics : MGG,
A H Osmani, and S A Osmani, and N R Morris
April 2004, Fungal genetics and biology : FG & B,
A H Osmani, and S A Osmani, and N R Morris
February 1997, Molecular endocrinology (Baltimore, Md.),
A H Osmani, and S A Osmani, and N R Morris
May 1989, Molecular & general genetics : MGG,
A H Osmani, and S A Osmani, and N R Morris
January 1985, Current genetics,
A H Osmani, and S A Osmani, and N R Morris
August 1985, The EMBO journal,
A H Osmani, and S A Osmani, and N R Morris
January 1980, Cell,
A H Osmani, and S A Osmani, and N R Morris
August 2001, Molecules and cells,
A H Osmani, and S A Osmani, and N R Morris
April 1998, Applied and environmental microbiology,
Copied contents to your clipboard!