Hydrogen sulfide protects against high-glucose-induced apoptosis in endothelial cells. 2012

Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
Provincial Hospital affiliated to Shandong University, Jinan, China.

Hydrogen sulfide (H2S) is the third endogenous gaseous mediator identified after nitric oxide and carbon monoxide. It has been demonstrated that H2S has protective effects on myocardial ischemia/reperfusion-induced cell apoptosis. To date, little is known about the role of H2S in the pathophysiology of diabetic vascular complications. In this study, we investigated the effects of sodium hydrosulfide on high-glucose-induced apoptosis of primary human umbilical vein endothelium cells. Exposure to high glucose (25 mmole/L) for 48 hours resulted in the induction of apoptosis by 41.6% ± 1.01%, which was attenuated by pretreatment with sodium hydrosulfide (50 μmole/L) for 30 minutes. Further investigation of the apoptotic mechanisms in the cells demonstrated that high glucose upregulated the ratio of Bax/Bcl-2 and activated caspase-3 and also increased the levels of reactive oxygen species and malondialdehyde while reducing superoxide dismutase activity. All the above responses could be prevented by pretreatment with 50 μmole/L of sodium hydrosulfide. These results indicated that the protective effects of H2S on endothelial cells in the condition of high glucose might involve an antioxidative stress mechanism.

UI MeSH Term Description Entries
D008315 Malondialdehyde The dialdehyde of malonic acid. Malonaldehyde,Propanedial,Malonylaldehyde,Malonyldialdehyde,Sodium Malondialdehyde,Malondialdehyde, Sodium
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013440 Sulfides Chemical groups containing the covalent sulfur bonds -S-. The sulfur atom can be bound to inorganic or organic moieties. Sulfide,Thioether,Thioethers,Sulfur Ethers,Ethers, Sulfur
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D017382 Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen. These reactive oxygen intermediates include SINGLET OXYGEN; SUPEROXIDES; PEROXIDES; HYDROXYL RADICAL; and HYPOCHLOROUS ACID. They contribute to the microbicidal activity of PHAGOCYTES, regulation of SIGNAL TRANSDUCTION and GENE EXPRESSION, and the oxidative damage to NUCLEIC ACIDS; PROTEINS; and LIPIDS. Active Oxygen Species,Oxygen Radical,Oxygen Radicals,Pro-Oxidant,Reactive Oxygen Intermediates,Active Oxygen,Oxygen Species, Reactive,Pro-Oxidants,Oxygen, Active,Pro Oxidant,Pro Oxidants,Radical, Oxygen
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell
D051028 bcl-2-Associated X Protein A member of the Bcl-2 protein family and homologous partner of C-BCL-2 PROTO-ONCOGENE PROTEIN. It regulates the release of CYTOCHROME C and APOPTOSIS INDUCING FACTOR from the MITOCHONDRIA. Several isoforms of BCL2-associated X protein occur due to ALTERNATIVE SPLICING of the mRNA for this protein. Bax Protein,Bax-alpha Protein,Bax-omega Protein,Bax-sigma Protein,Bax Apoptosis Regulator Protein,Bax-beta Protein,Bax-delta Protein,bcl2-Associated X Protein,bcl2-Associated X Protein Isoform alpha,bcl2-Associated X Protein Isoform beta,bcl2-Associated X Protein Isoform delta,bcl2-Associated X Protein Isoform omega,bcl2-Associated X Protein Isoform sigma,Bax alpha Protein,Bax beta Protein,Bax delta Protein,Bax omega Protein,Bax sigma Protein,Protein, bcl-2-Associated X,X Protein, bcl-2-Associated,bcl 2 Associated X Protein,bcl2 Associated X Protein,bcl2 Associated X Protein Isoform alpha,bcl2 Associated X Protein Isoform beta,bcl2 Associated X Protein Isoform delta,bcl2 Associated X Protein Isoform omega,bcl2 Associated X Protein Isoform sigma

Related Publications

Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
November 2016, Molecular medicine reports,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
March 2018, International journal of molecular medicine,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
January 2019, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
April 2015, Anesthesia and analgesia,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
December 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
January 2016, Molecular vision,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
December 2017, Bioscience reports,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
January 2020, Drug design, development and therapy,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
November 2014, Molecular medicine reports,
Qingbo Guan, and Yuan Zhang, and Chunxiao Yu, and Yuantao Liu, and Ling Gao, and Jiajun Zhao
January 2014, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
Copied contents to your clipboard!