"Stealth" melanoma cells in histology-negative sentinel lymph nodes. 2011

Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. itakura@ucla.edu

A proportion of patients who develop regional and distant recurrences of melanoma after a pathologically negative sentinel lymph node (SN) biopsy are reported to have enhanced signals for melanoma-associated messenger ribonucleic acid (mRNA) when sensitive molecular approaches such as reverse transcriptase polymerase chain reaction (RT-PCR) are used to evaluate their SN tissue. The significance of these findings remains controversial, because the cellular source of the augmented signals cannot be known as the nodal tissue is destroyed during preparation for RT-PCR. Nevertheless, it is claimed that the source of the augmented signal is covert metastatic melanoma cells. To determine whether there are histologically occult metastases in SN and whether there are sources of augmentable melanoma-associated mRNA other than melanoma cells, we applied reverse transcriptase in situ polymerase chain reaction (RT in situ PCR) to formalin-fixed paraffin-embedded nodal tissue. This approach amplifies small amounts of melanoma-associated mRNA and permits identification of cells that express that mRNA. Cells containing MART-1 mRNA were detected in 6 of 21 SNs (29%) and 2 of 16 nonsentinel lymph node (NSNs) (13%) that were tumor negative on hematoxylin and eosin and on immunohistochemical assessment for S-100, MART-1, and HMB-45. In patients with microscopic evidence of melanoma in their SN, MART-1 mRNA-positive cells were identified in 2 of 7 NSNs (29%) that were histologically tumor free. MART-1 mRNA-positive cells were also detected in tumor-negative SN sections from 6 of 7 (86%) nodes that had tumor present in areas of the node not represented in the studied sections. Some cells that expressed MART-1 mRNA that was diffusely distributed in the cytoplasm appeared to be melanoma cells, whereas others resembled macrophages. The latter cells expressed augmented mRNA on granules that were intermixed with melanin granules. In other cases, MART-1 mRNA-positive macrophage-like cells contained nuclei and nucleoli more typical of melanoma cells and may represent the macrophage-melanoma hybrids that have been previously reported. Combination of RT in situ PCR for MART-1 mRNA and immunohistochemistry for CD68 revealed that CD68 was colocalized in some cells that expressed MART-1 mRNA. Some lymph nodes that are tumor negative by histology and immunohistochemistry contain cells that express mRNA for MART-1. Some of these cells may be interpreted as "stealth" melanoma cells in which, despite the presence of MART-1 mRNA, there is an absence of immunohistochemically detectable MART-1 protein. Other cells that contain MART-1 mRNA are clearly not melanoma cells or may represent melanoma hybrids. These findings should be taken into account when interpreting and applying the results of RT-PCR analysis of nodal (and other) tissues.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008198 Lymph Nodes They are oval or bean shaped bodies (1 - 30 mm in diameter) located along the lymphatic system. Lymph Node,Node, Lymph,Nodes, Lymph
D008207 Lymphatic Metastasis Transfer of a neoplasm from its primary site to lymph nodes or to distant parts of the body by way of the lymphatic system. Lymph Node Metastasis,Lymph Node Metastases,Lymphatic Metastases,Metastasis, Lymph Node
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D009360 Neoplastic Cells, Circulating Exfoliate neoplastic cells circulating in the blood and associated with metastasizing tumors. Circulating Neoplastic Cells,Embolic Tumor Cells,Embolism, Tumor,Neoplasm Circulating Cells,Tumor Cells, Embolic,Cells, Neoplasm Circulating,Circulating Cells, Neoplasm,Circulating Tumor Cells,Cell, Circulating Neoplastic,Cell, Circulating Tumor,Cell, Embolic Tumor,Cell, Neoplasm Circulating,Cells, Circulating Neoplastic,Cells, Circulating Tumor,Cells, Embolic Tumor,Circulating Neoplastic Cell,Circulating Tumor Cell,Embolic Tumor Cell,Embolisms, Tumor,Neoplasm Circulating Cell,Neoplastic Cell, Circulating,Tumor Cell, Circulating,Tumor Cell, Embolic,Tumor Cells, Circulating,Tumor Embolism,Tumor Embolisms
D011237 Predictive Value of Tests In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test. Negative Predictive Value,Positive Predictive Value,Predictive Value Of Test,Predictive Values Of Tests,Negative Predictive Values,Positive Predictive Values,Predictive Value, Negative,Predictive Value, Positive
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D012878 Skin Neoplasms Tumors or cancer of the SKIN. Cancer of Skin,Skin Cancer,Cancer of the Skin,Neoplasms, Skin,Cancer, Skin,Cancers, Skin,Neoplasm, Skin,Skin Cancers,Skin Neoplasm

Related Publications

Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
May 2024, Cancers,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
May 2002, Archives of surgery (Chicago, Ill. : 1960),
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
September 2017, Clinics in laboratory medicine,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
January 2000, Annali italiani di chirurgia,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
June 2011, Clinics in laboratory medicine,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
September 2009, Surgical pathology clinics,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
August 2005, Clinical cancer research : an official journal of the American Association for Cancer Research,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
May 2016, Surgery,
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
April 1999, Archives of surgery (Chicago, Ill. : 1960),
Eijun Itakura, and Rong-Rong Huang, and Duan-Ren Wen, and Alistair J Cochran
May 2012, Blood,
Copied contents to your clipboard!