High mutation rates in the mitochondrial genomes of Daphnia pulex. 2012

Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada. xu11n@uwindsor.ca

Despite the great utility of mitochondrial DNA (mtDNA) sequence data in population genetics and phylogenetics, key parameters describing the process of mitochondrial mutation (e.g., the rate and spectrum of mutational change) are based on few direct estimates. Furthermore, the variation in the mtDNA mutation process within species or between lineages with contrasting reproductive strategies remains poorly understood. In this study, we directly estimate the mtDNA mutation rate and spectrum using Daphnia pulex mutation-accumulation (MA) lines derived from sexual (cyclically parthenogenetic) and asexual (obligately parthenogenetic) lineages. The nearly complete mitochondrial genome sequences of 82 sexual and 47 asexual MA lines reveal high mtDNA mutation rate of 1.37 × 10(-7) and 1.73 × 10(-7) per nucleotide per generation, respectively. The Daphnia mtDNA mutation rate is among the highest in eukaryotes, and its spectrum is dominated by insertions and deletions (70%), largely due to the presence of mutational hotspots at homopolymeric nucleotide stretches. Maximum likelihood estimates of the Daphnia mitochondrial effective population size reveal that between five and ten copies of mitochondrial genomes are transmitted per female per generation. Comparison between sexual and asexual lineages reveals no statistically different mutation rates and highly similar mutation spectra.

UI MeSH Term Description Entries
D008928 Mitochondria Semiautonomous, self-reproducing organelles that occur in the cytoplasm of all cells of most, but not all, eukaryotes. Each mitochondrion is surrounded by a double limiting membrane. The inner membrane is highly invaginated, and its projections are called cristae. Mitochondria are the sites of the reactions of oxidative phosphorylation, which result in the formation of ATP. They contain distinctive RIBOSOMES, transfer RNAs (RNA, TRANSFER); AMINO ACYL T RNA SYNTHETASES; and elongation and termination factors. Mitochondria depend upon genes within the nucleus of the cells in which they reside for many essential messenger RNAs (RNA, MESSENGER). Mitochondria are believed to have arisen from aerobic bacteria that established a symbiotic relationship with primitive protoeukaryotes. (King & Stansfield, A Dictionary of Genetics, 4th ed) Mitochondrial Contraction,Mitochondrion,Contraction, Mitochondrial,Contractions, Mitochondrial,Mitochondrial Contractions
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D003621 Daphnia A diverse genus of minute freshwater CRUSTACEA, of the suborder CLADOCERA. They are a major food source for both young and adult freshwater fish. Daphnias
D004272 DNA, Mitochondrial Double-stranded DNA of MITOCHONDRIA. In eukaryotes, the mitochondrial GENOME is circular and codes for ribosomal RNAs, transfer RNAs, and about 10 proteins. Mitochondrial DNA,mtDNA
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D054629 Genome, Mitochondrial The genetic complement of MITOCHONDRIA as represented in their DNA. Mitochondrial Genome,Genomes, Mitochondrial,Mitochondrial Genomes
D059645 Mutation Rate The number of mutations that occur in a specific sequence, GENE, or GENOME over a specified period of time such as years, CELL DIVISIONS, or generations. Mutation Frequency,Frequencies, Mutation,Frequency, Mutation,Mutation Frequencies,Mutation Rates,Rate, Mutation,Rates, Mutation

Related Publications

Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
October 2017, Genetics,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
April 2022, Molecular biology and evolution,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
January 2016, Genome research,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
June 2015, Journal of experimental zoology. Part A, Ecological genetics and physiology,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
September 2017, Proceedings. Biological sciences,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
January 1994, Current genetics,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
November 1977, Medical & biological illustration,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
January 1997, Current genetics,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
November 2020, Molecular biology and evolution,
Sen Xu, and Sarah Schaack, and Amanda Seyfert, and Eunjin Choi, and Michael Lynch, and Melania E Cristescu
January 2016, ZooKeys,
Copied contents to your clipboard!