Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. 1990

K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
First Department of Internal Medicine, School of Medicine, Osaka University, Japan.

We investigated the pathogenic role of free radical formation in ischemic neuronal death using radical scavenger, superoxide dismutase. Cerebral ischemia was produced in the gerbil by bilateral common carotid occlusion for 5 min, which consistently resulted in delayed neuronal death in the CA1 region of the hippocampus. The effects of free superoxide dismutase and a derivatized superoxide dismutase, pyran copolymer conjugated superoxide dismutase, on early ischemic damages, detected sensitively by the immunohistochemical reaction for microtubule associated protein 2, and a subsequent delayed neuronal death after restoration of blood flow were investigated. Preischemic treatment by pyran conjugated superoxide dismutase showed clear protective effects against both the neuronal damages detected by immunohistochemistry after 5 min ischemia and the delayed neuronal necrosis after one week of recovery, although no clear beneficial effects were observed when this drug was administered just before the recirculation or free superoxide dismutase was used. These results strongly suggest that free radical generation during brief period of ischemia plays a pivotal role in triggering the ischemic neuronal damages causing delayed neuronal death at the selectively vulnerable areas of the brain.

UI MeSH Term Description Entries
D007124 Immunoenzyme Techniques Immunologic techniques based on the use of: (1) enzyme-antibody conjugates; (2) enzyme-antigen conjugates; (3) antienzyme antibody followed by its homologous enzyme; or (4) enzyme-antienzyme complexes. These are used histologically for visualizing or labeling tissue specimens. Antibody Enzyme Technique, Unlabeled,Enzyme Immunoassay,Enzyme-Labeled Antibody Technique,Immunoassay, Enzyme,Immunoperoxidase Techniques,Peroxidase-Antiperoxidase Complex Technique,Peroxidase-Labeled Antibody Technique,Antibody Enzyme Technic, Unlabeled,Enzyme-Labeled Antibody Technic,Immunoenzyme Technics,Immunoperoxidase Technics,Peroxidase-Antiperoxidase Complex Technic,Peroxidase-Labeled Antibody Technic,Antibody Technic, Enzyme-Labeled,Antibody Technic, Peroxidase-Labeled,Antibody Technics, Enzyme-Labeled,Antibody Technics, Peroxidase-Labeled,Antibody Technique, Enzyme-Labeled,Antibody Technique, Peroxidase-Labeled,Antibody Techniques, Enzyme-Labeled,Antibody Techniques, Peroxidase-Labeled,Enzyme Immunoassays,Enzyme Labeled Antibody Technic,Enzyme Labeled Antibody Technique,Enzyme-Labeled Antibody Technics,Enzyme-Labeled Antibody Techniques,Immunoassays, Enzyme,Immunoenzyme Technic,Immunoenzyme Technique,Immunoperoxidase Technic,Immunoperoxidase Technique,Peroxidase Antiperoxidase Complex Technic,Peroxidase Antiperoxidase Complex Technique,Peroxidase Labeled Antibody Technic,Peroxidase Labeled Antibody Technique,Peroxidase-Antiperoxidase Complex Technics,Peroxidase-Antiperoxidase Complex Techniques,Peroxidase-Labeled Antibody Technics,Peroxidase-Labeled Antibody Techniques,Technic, Enzyme-Labeled Antibody,Technic, Immunoenzyme,Technic, Immunoperoxidase,Technic, Peroxidase-Antiperoxidase Complex,Technic, Peroxidase-Labeled Antibody,Technics, Enzyme-Labeled Antibody,Technics, Immunoenzyme,Technics, Immunoperoxidase,Technics, Peroxidase-Antiperoxidase Complex,Technics, Peroxidase-Labeled Antibody,Technique, Enzyme-Labeled Antibody,Technique, Immunoenzyme,Technique, Immunoperoxidase,Technique, Peroxidase-Antiperoxidase Complex,Technique, Peroxidase-Labeled Antibody,Techniques, Enzyme-Labeled Antibody,Techniques, Immunoenzyme,Techniques, Immunoperoxidase,Techniques, Peroxidase-Antiperoxidase Complex,Techniques, Peroxidase-Labeled Antibody
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D012016 Reference Values The range or frequency distribution of a measurement in a population (of organisms, organs or things) that has not been selected for the presence of disease or abnormality. Normal Range,Normal Values,Reference Ranges,Normal Ranges,Normal Value,Range, Normal,Range, Reference,Ranges, Normal,Ranges, Reference,Reference Range,Reference Value,Value, Normal,Value, Reference,Values, Normal,Values, Reference
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002546 Ischemic Attack, Transient Brief reversible episodes of focal, nonconvulsive ischemic dysfunction of the brain having a duration of less than 24 hours, and usually less than one hour, caused by transient thrombotic or embolic blood vessel occlusion or stenosis. Events may be classified by arterial distribution, temporal pattern, or etiology (e.g., embolic vs. thrombotic). (From Adams et al., Principles of Neurology, 6th ed, pp814-6) Brain Stem Ischemia, Transient,Cerebral Ischemia, Transient,Crescendo Transient Ischemic Attacks,Transient Ischemic Attack,Anterior Circulation Transient Ischemic Attack,Brain Stem Transient Ischemic Attack,Brain TIA,Brainstem Ischemia, Transient,Brainstem Transient Ischemic Attack,Carotid Circulation Transient Ischemic Attack,Posterior Circulation Transient Ischemic Attack,TIA (Transient Ischemic Attack),Transient Ischemic Attack, Anterior Circulation,Transient Ischemic Attack, Brain Stem,Transient Ischemic Attack, Brainstem,Transient Ischemic Attack, Carotid Circulation,Transient Ischemic Attack, Posterior Circulation,Transient Ischemic Attack, Vertebrobasilar Circulation,Transient Ischemic Attacks, Crescendo,Vertebrobasilar Circulation Transient Ischemic Attack,Attack, Transient Ischemic,Attacks, Transient Ischemic,Brainstem Ischemias, Transient,Cerebral Ischemias, Transient,Ischemia, Transient Brainstem,Ischemia, Transient Cerebral,Ischemias, Transient Brainstem,Ischemias, Transient Cerebral,Ischemic Attacks, Transient,TIA, Brain,TIAs (Transient Ischemic Attack),Transient Brainstem Ischemia,Transient Cerebral Ischemia,Transient Cerebral Ischemias,Transient Ischemic Attacks
D005260 Female Females
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D005849 Gerbillinae A subfamily of the Muridae consisting of several genera including Gerbillus, Rhombomys, Tatera, Meriones, and Psammomys. Gerbils,Jird,Meriones,Psammomys,Rats, Sand,Gerbil,Jirds,Merione,Rat, Sand,Sand Rat,Sand Rats

Related Publications

K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
January 2001, Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
July 1997, Brain research,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
May 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
July 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
March 1994, No to hattatsu = Brain and development,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
March 2003, No to shinkei = Brain and nerve,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
September 2004, Nihon rinsho. Japanese journal of clinical medicine,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
December 2003, The Journal of neuroscience : the official journal of the Society for Neuroscience,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
January 1999, Revista de neurologia,
K Kitagawa, and M Matsumoto, and T Oda, and M Niinobe, and R Hata, and N Handa, and R Fukunaga, and Y Isaka, and K Kimura, and H Maeda
July 2015, Journal of neurosurgery,
Copied contents to your clipboard!