Trophic effects of insulin-like growth factor-I on fetal rat hypothalamic cells in culture. 1990

I Torres-Aleman, and F Naftolin, and R J Robbins
Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06510.

The hypothesis that insulin-like growth factor-I is a trophic factor for primary fetal rat hypothalamic cells was tested, since we previously reported a potent mitogenic effect of this peptide on virally-transformed hypothalamic cells. It was found that insulin-like growth factor-I produced significant and dose-dependent increases in the survival of fetal hypothalamic neurons in primary mixed glial/neuronal cultures. By 48 h in vitro, cultures treated with insulin-like growth factor-I (6 nM) had twice as many neurite-bearing cells as controls, while by day 15 a five-fold difference was present. The peptide was similarly active in promoting neuronal survival in neuron-enriched (98% neurons) hypothalamic cultures. Mixed hypothalamic cultures had specific binding sites for insulin-like growth factor-I. In addition, the neurons grown in the presence of insulin-like growth factor-I had a more differentiated morphology and had significantly higher levels of protein kinase C, an enzyme that increases during neurite formation and synaptogenesis. Finally, glial-enriched cultures (greater than 99% glial cells) obtained from the fetal hypothalamus showed increased [3H]thymidine incorporation in response to insulin-like growth factor-I. These results further support the contention that insulin-like growth factor-I is a neurotrophic factor and suggest that it may participate in the normal development of the hypothalamus by increasing neuronal survival/differentiation and stimulating glial growth.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell

Related Publications

I Torres-Aleman, and F Naftolin, and R J Robbins
October 2004, Hearing research,
I Torres-Aleman, and F Naftolin, and R J Robbins
February 2001, Journal of neurochemistry,
I Torres-Aleman, and F Naftolin, and R J Robbins
April 1996, Endocrinology,
I Torres-Aleman, and F Naftolin, and R J Robbins
December 1992, Neuroendocrinology,
I Torres-Aleman, and F Naftolin, and R J Robbins
November 1986, The Journal of biological chemistry,
I Torres-Aleman, and F Naftolin, and R J Robbins
April 1997, Brain research. Developmental brain research,
Copied contents to your clipboard!