Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. 2011

Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
Department of Virology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.

There is considerable interest in the development of broadly protective influenza vaccines because of the continuous emergence of antigenic drift variants of seasonal influenza viruses and the threat posed by the emergence of antigenically distinct pandemic influenza viruses. It has been recognized more than three decades ago that influenza A virus-specific cytotoxic T lymphocytes recognize epitopes located in the relatively conserved proteins like the nucleoprotein and that they cross-react with various subtypes of influenza A viruses. This implies that these CD8+ T lymphocytes may contribute to protective heterosubtypic immunity induced by antecedent influenza A virus infections. In the present paper, we review the evidence for the role of virus-specific CD8+ T lymphocytes in protective immunity against influenza virus infections and discuss vaccination strategies that aim at the induction of cross-reactive virus-specific T-cell responses.

UI MeSH Term Description Entries
D007251 Influenza, Human An acute viral infection in humans involving the respiratory tract. It is marked by inflammation of the NASAL MUCOSA; the PHARYNX; and conjunctiva, and by headache and severe, often generalized, myalgia. Grippe,Human Flu,Human Influenza,Influenza in Humans,Influenza,Flu, Human,Human Influenzas,Influenza in Human,Influenzas,Influenzas, Human
D007252 Influenza Vaccines Vaccines used to prevent infection by viruses in the family ORTHOMYXOVIRIDAE. It includes both killed and attenuated vaccines. The composition of the vaccines is changed each year in response to antigenic shifts and changes in prevalence of influenza virus strains. The flu vaccines may be mono- or multi-valent, which contains one or more ALPHAINFLUENZAVIRUS and BETAINFLUENZAVIRUS strains. Flu Vaccine,Influenzavirus Vaccine,Monovalent Influenza Vaccine,Universal Flu Vaccine,Universal Influenza Vaccine,Flu Vaccines,High-Dose Trivalent Influenza Vaccine,Influenza Vaccine,Influenza Virus Vaccine,Influenza Virus Vaccines,Influenzavirus Vaccines,Intranasal Live-Attenuated Influenza Vaccine,LAIV Vaccine,Monovalent Influenza Vaccines,Quadrivalent Influenza Vaccine,Trivalent Influenza Vaccine,Trivalent Live Attenuated Influenza Vaccine,Universal Flu Vaccines,Universal Influenza Vaccines,Flu Vaccine, Universal,High Dose Trivalent Influenza Vaccine,Influenza Vaccine, Monovalent,Influenza Vaccine, Quadrivalent,Influenza Vaccine, Trivalent,Influenza Vaccine, Universal,Intranasal Live Attenuated Influenza Vaccine,Vaccine, Flu,Vaccine, Influenza,Vaccine, Influenza Virus,Vaccine, Influenzavirus,Vaccine, LAIV,Vaccine, Monovalent Influenza,Vaccine, Quadrivalent Influenza,Vaccine, Trivalent Influenza,Virus Vaccine, Influenza
D009975 Orthomyxoviridae A family of RNA viruses causing INFLUENZA and other respiratory diseases. Orthomyxoviridae includes INFLUENZAVIRUS A; INFLUENZAVIRUS B; INFLUENZAVIRUS C; INFLUENZAVIRUS D; ISAVIRUS; and THOGOTOVIRUS. Influenza Viruses,Myxoviruses,Orthomyxoviruses,Influenza Virus,Myxovirus,Orthomyxovirus
D003429 Cross Reactions Serological reactions in which an antiserum against one antigen reacts with a non-identical but closely related antigen. Cross Reaction,Reaction, Cross,Reactions, Cross
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D013602 T-Lymphocytes, Cytotoxic Immunized T-lymphocytes which can directly destroy appropriate target cells. These cytotoxic lymphocytes may be generated in vitro in mixed lymphocyte cultures (MLC), in vivo during a graft-versus-host (GVH) reaction, or after immunization with an allograft, tumor cell or virally transformed or chemically modified target cell. The lytic phenomenon is sometimes referred to as cell-mediated lympholysis (CML). These CD8-positive cells are distinct from NATURAL KILLER CELLS and NATURAL KILLER T-CELLS. There are two effector phenotypes: TC1 and TC2. Cell-Mediated Lympholytic Cells,Cytotoxic T Cells,Cytotoxic T Lymphocyte,Cytotoxic T-Lymphocytes,TC1 Cell,TC1 Cells,TC2 Cell,TC2 Cells,Cell Mediated Lympholytic Cells,Cell, Cell-Mediated Lympholytic,Cell, TC1,Cell, TC2,Cell-Mediated Lympholytic Cell,Cytotoxic T Cell,Cytotoxic T Lymphocytes,Cytotoxic T-Lymphocyte,Lymphocyte, Cytotoxic T,Lympholytic Cell, Cell-Mediated,Lympholytic Cells, Cell-Mediated,T Cell, Cytotoxic,T Lymphocyte, Cytotoxic,T Lymphocytes, Cytotoxic,T-Lymphocyte, Cytotoxic
D056738 Cross Protection Protection conferred on a host by inoculation with one strain or component of a microorganism that prevents infection when later challenged with a similar strain. Most commonly the microorganism is a virus. Protection, Cross
D019444 Vaccines, DNA Recombinant DNA vectors encoding antigens administered for the prevention or treatment of disease. The host cells take up the DNA, express the antigen, and present it to the immune system in a manner similar to that which would occur during natural infection. This induces humoral and cellular immune responses against the encoded antigens. The vector is called naked DNA because there is no need for complex formulations or delivery agents; the plasmid is injected in saline or other buffers. DNA Vaccine,DNA Vaccines,Naked DNA Vaccine,Naked DNA Vaccines,Recombinant DNA Vaccine,Recombinant DNA Vaccines,Vaccines, Recombinant DNA,DNA Vaccine, Naked,DNA Vaccine, Recombinant,DNA Vaccines, Naked,DNA Vaccines, Recombinant,Vaccine, DNA,Vaccine, Naked DNA,Vaccine, Recombinant DNA,Vaccines, Naked DNA

Related Publications

Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
December 2007, Current opinion in biotechnology,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
January 1994, Current topics in microbiology and immunology,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
January 2011, Microbiology and immunology,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
August 2018, Current opinion in immunology,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
November 2023, Vaccines,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
December 2015, American journal of preventive medicine,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
November 2015, Vaccine,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
January 2021, PloS one,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
April 2019, The Journal of infectious diseases,
Marine L B Hillaire, and Albert D M E Osterhaus, and Guus F Rimmelzwaan
September 2000, Immunology,
Copied contents to your clipboard!