Endothelial differentiation by multipotent fetal mouse lung mesenchymal cells. 2012

Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
Division of Neonatology, Department of Pediatrics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

During fetal lung development, cells within the mesenchyme differentiate into vascular endothelia. This process of vasculogenesis gives rise to the cells that will eventually form the alveolar capillary bed. The cellular mechanisms regulating lung vasculogenesis are poorly understood, partly due to the lack of experimental systems that model this process. Here, we have developed and characterized a novel fetal mouse lung cell model of mesenchymal to endothelial differentiation. Using mesenchymal cells from the lungs of embryonal day 15 Immortomice, we show that endothelial growth media containing fibroblast growth factor-2 and vascular endothelial growth factor can stimulate formation of vascular endothelial cells in culture. These newly formed endothelial cells retain plasticity, as removing endothelial growth media causes loss of vascular markers and renewed formation of α-smooth muscle actin positive stress fibers. Cells with the highest Flk-1 expression differentiated into endothelia more efficiently. Individual mesenchymal cell clones had varied ability to acquire an endothelial phenotype. These fetal lung mesenchymal cells were multipotent, capable of differentiating into not only vascular endothelia, but also osteogenic and chondrongenic cell lineages. Our data establish a cell culture model for mesenchymal to endothelial differentiation that could prove useful for future mechanistic studies in the process of vasculogenesis both during normal development and in the pathogenesis of pulmonary vascular disease.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000943 Antigens, Differentiation Antigens expressed primarily on the membranes of living cells during sequential stages of maturation and differentiation. As immunologic markers they have high organ and tissue specificity and are useful as probes in studies of normal cell development as well as neoplastic transformation. Differentiation Antigen,Differentiation Antigens,Differentiation Antigens, Hairy Cell Leukemia,Differentiation Marker,Differentiation Markers,Leu Antigen,Leu Antigens,Marker Antigen,Marker Antigens,Markers, Differentiation,Antigen, Differentiation,Antigen, Leu,Antigen, Marker,Antigens, Leu,Antigens, Marker,Marker, Differentiation
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2
D042461 Vascular Endothelial Growth Factor A The original member of the family of endothelial cell growth factors referred to as VASCULAR ENDOTHELIAL GROWTH FACTORS. Vascular endothelial growth factor-A was originally isolated from tumor cells and referred to as "tumor angiogenesis factor" and "vascular permeability factor". Although expressed at high levels in certain tumor-derived cells it is produced by a wide variety of cell types. In addition to stimulating vascular growth and vascular permeability it may play a role in stimulating VASODILATION via NITRIC OXIDE-dependent pathways. Alternative splicing of the mRNA for vascular endothelial growth factor A results in several isoforms of the protein being produced. Vascular Endothelial Growth Factor,Vascular Endothelial Growth Factor-A,GD-VEGF,Glioma-Derived Vascular Endothelial Cell Growth Factor,VEGF,VEGF-A,Vascular Permeability Factor,Vasculotropin,Glioma Derived Vascular Endothelial Cell Growth Factor,Permeability Factor, Vascular
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell

Related Publications

Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
December 2004, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
August 2020, BMC veterinary research,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
January 2011, Journal of biological regulators and homeostatic agents,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
January 2011, Methods in molecular biology (Clifton, N.J.),
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
January 2017, PloS one,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
December 2012, Journal of molecular and cellular cardiology,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
February 2011, Journal of animal science,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
January 2012, Journal of vascular research,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
March 2011, Cytotherapy,
Yasutoshi Yamamoto, and Harold Scott Baldwin, and Lawrence S Prince
January 2005, Cell transplantation,
Copied contents to your clipboard!