Separation of sublethal and lethal effects of polymorphonuclear leukocytes on Escherichia coli. 1990

B A Mannion, and J Weiss, and P Elsbach
Department of Microbiology, New York University School of Medicine, New York 10016.

Escherichia coli ingested by PMN promptly stop growing and form no colonies in nutrient agar, but metabolize near normally for up to several hours. The bactericidal/permeability increasing protein (BPI) of PMN also inhibits E. coli growth without initial metabolic impairment. We recently showed that BPI-treated E. coli, although unable to grow in normal nutrient agar, can form colonies in this medium plus 0.1% BSA, as long as their metabolism is maintained, indicating that biochemical impairment is a better indicator of death than growth arrest (1990. J. Clin. Invest. 85:853-860). We have now reexamined the fate of ingested E. coli. Rabbit PMN ingest greater than 85% of several rough E. coli strains in 15 min, but greater than 80% of these bacteria, while unable to form colonies in conventional agar, grow normally on agar plus 0.1% BSA. Thus, the PMN under these conditions promptly stop growth of ingested E. coli without killing. Adding nonlethal concentrations of normal human serum (NHS) before, but not after ingestion, accelerates killing and, in parallel, loss of bacterial metabolism (t1/2 less than 0.5 h vs. greater than 3 h, respectively, with and without NHS). The rapid killing of both rough and smooth E. coli pretreated with NHS is lost after C7 depletion (C7-D) and restored when C7 is replenished. Similar results are obtained with human PMN. In contrast, ingested Staphylococcus epidermidis, opsonized with either NHS or C7-D serum rapidly stop metabolizing and do not form colonies in nutrient agar with or without BSA. Respiratory burst activity is the same during ingestion of E. coli (with or without NHS) and S. epidermidis. Killing of E. coli J5 (however, not of O111-B4) by BPI is also accelerated by pretreatment with NHS but not C7-D human serum. These findings indicate that late complement components are needed for efficient killing of both rough and smooth E. coli by PMN, and that BPI is the principal intracellular agent acting on ingested rough E. coli.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010427 Pentose Phosphate Pathway An oxidative decarboxylation process that converts GLUCOSE-6-PHOSPHATE to D-ribose-5-phosphate via 6-phosphogluconate. The pentose product is used in the biosynthesis of NUCLEIC ACIDS. The generated energy is stored in the form of NADPH. This pathway is prominent in tissues which are active in the synthesis of FATTY ACIDS and STEROIDS. Hexose Monophosphate Shunt,Pentose Phosphate Shunt,Pentose Shunt,Pentosephosphate Pathway,Pentose-Phosphate Pathway,Pentosephosphate Shunt,Hexose Monophosphate Shunts,Pathway, Pentose Phosphate,Pathway, Pentose-Phosphate,Pathway, Pentosephosphate,Pathways, Pentose Phosphate,Pathways, Pentose-Phosphate,Pathways, Pentosephosphate,Pentose Phosphate Pathways,Pentose Phosphate Shunts,Pentose Shunts,Pentose-Phosphate Pathways,Pentosephosphate Pathways,Pentosephosphate Shunts,Shunt, Hexose Monophosphate,Shunt, Pentose,Shunt, Pentose Phosphate,Shunt, Pentosephosphate,Shunts, Hexose Monophosphate,Shunts, Pentose,Shunts, Pentose Phosphate,Shunts, Pentosephosphate
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001770 Blood Bactericidal Activity The natural bactericidal property of BLOOD due to normally occurring antibacterial substances such as beta lysin, leukin, etc. This activity needs to be distinguished from the bactericidal activity contained in a patient's serum as a result of antimicrobial therapy, which is measured by a SERUM BACTERICIDAL TEST. Activities, Blood Bactericidal,Activity, Blood Bactericidal,Bactericidal Activities, Blood,Bactericidal Activity, Blood,Blood Bactericidal Activities
D001798 Blood Proteins Proteins that are present in blood serum, including SERUM ALBUMIN; BLOOD COAGULATION FACTORS; and many other types of proteins. Blood Protein,Plasma Protein,Plasma Proteins,Serum Protein,Serum Proteins,Protein, Blood,Protein, Plasma,Protein, Serum,Proteins, Blood,Proteins, Plasma,Proteins, Serum
D003165 Complement System Proteins Serum glycoproteins participating in the host defense mechanism of COMPLEMENT ACTIVATION that creates the COMPLEMENT MEMBRANE ATTACK COMPLEX. Included are glycoproteins in the various pathways of complement activation (CLASSICAL COMPLEMENT PATHWAY; ALTERNATIVE COMPLEMENT PATHWAY; and LECTIN COMPLEMENT PATHWAY). Complement Proteins,Complement,Complement Protein,Hemolytic Complement,Complement, Hemolytic,Protein, Complement,Proteins, Complement,Proteins, Complement System
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

B A Mannion, and J Weiss, and P Elsbach
February 1998, Biochemical Society transactions,
B A Mannion, and J Weiss, and P Elsbach
October 1982, Infection and immunity,
B A Mannion, and J Weiss, and P Elsbach
October 1989, Journal of chemotherapy (Florence, Italy),
B A Mannion, and J Weiss, and P Elsbach
December 1947, Journal of bacteriology,
B A Mannion, and J Weiss, and P Elsbach
October 1993, Enfermedades infecciosas y microbiologia clinica,
B A Mannion, and J Weiss, and P Elsbach
March 1970, Applied microbiology,
B A Mannion, and J Weiss, and P Elsbach
July 1983, Infection and immunity,
B A Mannion, and J Weiss, and P Elsbach
July 1976, Canadian journal of comparative medicine : Revue canadienne de medecine comparee,
B A Mannion, and J Weiss, and P Elsbach
December 1985, Infection and immunity,
B A Mannion, and J Weiss, and P Elsbach
April 1987, Biotechnology and bioengineering,
Copied contents to your clipboard!