Regulation of testicular function by insulin and transforming growth factor-beta. 1990

W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
Endocrine Unit, University College and Middlesex School of Medicine, Middlesex Hospital, London, UK.

Hyperinsulinism is associated with disorders of androgen production in humans. We have studied the effects of insulin and insulin-like growth factor-1 on androgen production in vitro using a crude preparation of mouse Leydig cells incubated with luteinizing hormone in a serum-free medium. We found a positive correlation between testosterone production and the luteinizing hormone dose over 3 hours. Exposure of the cells for 1 hour to insulin (1 micrograms/ml) prior to the addition of luteinizing hormone significantly augmented the amount of testosterone produced in response to the gonadotropin when added after this preincubation. In contrast, prior exposure of the cells to proinsulin (30 micrograms/ml), insulin-like growth factor-1 (30 ng/ml), or epidermal growth factor-1 (1 micrograms/ml) did not influence the testosterone response to luteinizing hormone. Transforming growth factor-beta reduced the testosterone response to luteinizing hormone. Transforming growth factor-beta (1,000 pg/ml) blocked the insulin augmentation of luteinizing hormone-stimulated testosterone production. We conclude that insulin has an endocrine effect on testosterone production by mouse Leydig cells in vitro. Furthermore, the Leydig cell response to insulin is itself sensitive to interaction with transforming growth factor-beta which may operate as part of the paracrine control of Leydig cell function.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D007985 Leydig Cells Steroid-producing cells in the interstitial tissue of the TESTIS. They are under the regulation of PITUITARY HORMONES; LUTEINIZING HORMONE; or interstitial cell-stimulating hormone. TESTOSTERONE is the major androgen (ANDROGENS) produced. Interstitial Cells, Testicular,Leydig Cell,Testicular Interstitial Cell,Testicular Interstitial Cells,Cell, Leydig,Cell, Testicular Interstitial,Cells, Leydig,Cells, Testicular Interstitial,Interstitial Cell, Testicular
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D011384 Proinsulin A pancreatic polypeptide of about 110 amino acids, depending on the species, that is the precursor of insulin. Proinsulin, produced by the PANCREATIC BETA CELLS, is comprised sequentially of the N-terminal B-chain, the proteolytically removable connecting C-peptide, and the C-terminal A-chain. It also contains three disulfide bonds, two between A-chain and B-chain. After cleavage at two locations, insulin and C-peptide are the secreted products. Intact proinsulin with low bioactivity also is secreted in small amounts.
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone
D015291 Transforming Growth Factors Hormonally active polypeptides that can induce the transformed phenotype when added to normal, non-transformed cells. They have been found in culture fluids from retrovirally transformed cells and in tumor-derived cells as well as in non-neoplastic sources. Their transforming activities are due to the simultaneous action of two otherwise unrelated factors, TRANSFORMING GROWTH FACTOR ALPHA and TRANSFORMING GROWTH FACTOR BETA. Transforming Growth Factor,Factor, Transforming Growth,Factors, Transforming Growth,Growth Factor, Transforming,Growth Factors, Transforming

Related Publications

W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
January 1992, Cancer treatment and research,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
July 1992, Journal of neuroimmunology,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
October 1999, The Prostate,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
November 1990, Pathologie-biologie,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
November 1991, Journal of cellular biochemistry,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
January 1999, The Journal of steroid biochemistry and molecular biology,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
March 2019, Andrology,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
February 1989, Biochemical and biophysical research communications,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
April 2003, The Biochemical journal,
W M Bebakar, and J W Honour, and D Foster, and Y L Liu, and H S Jacobs
August 1995, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Copied contents to your clipboard!