Influence of temperature on mechanics and energetics of muscle contraction. 1990

J A Rall, and R C Woledge
Department of Physiology, Ohio State University, Columbus 43210.

Results gleaned from use of temperature as a probe to study skeletal muscle performance and mechanisms of activation and contraction are reviewed. Steady-state and non-steady-state responses to changes in temperature are considered. Temperature sensitivities, Q10 values, of mechanical and energetic parameters range from nearly 1 to greater than 5 in frog skeletal muscle. Factors that are less temperature sensitive (Q10 less than or equal to 1.5) are peak tetanic force, instantaneous stiffness, curvature of force-velocity relation, magnitude of labile heat, and mechanical efficiency. Rates with intermediate temperature sensitivities (Q10 greater than 2 but less than 3) include rate of isometric force development, maximum shortening velocity, and relaxation from a brief tetanus. Rates with high temperature sensitivities (Q10 greater than 3) include cross-bridge turnover during an isometric tetanus, isometric economy, maximum power output, Ca2+ sequestration by sarcoplasmic reticulum, relaxation from a prolonged tetanus, and recovery metabolism. The observation that the Q10 for relaxation rate depends on tetanic duration can be explained in terms of the possible role of parvalbumin as a soluble relaxing factor.

UI MeSH Term Description Entries
D007537 Isometric Contraction Muscular contractions characterized by increase in tension without change in length. Contraction, Isometric,Contractions, Isometric,Isometric Contractions
D007551 Isotonic Contraction Muscle contraction with negligible change in the force of contraction but shortening of the distance between the origin and insertion. Contraction, Isotonic,Contractions, Isotonic,Isotonic Contractions
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D004734 Energy Metabolism The chemical reactions involved in the production and utilization of various forms of energy in cells. Bioenergetics,Energy Expenditure,Bioenergetic,Energy Expenditures,Energy Metabolisms,Expenditure, Energy,Expenditures, Energy,Metabolism, Energy,Metabolisms, Energy
D006706 Homeostasis The processes whereby the internal environment of an organism tends to remain balanced and stable. Autoregulation
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures

Related Publications

J A Rall, and R C Woledge
September 1980, The American journal of physiology,
J A Rall, and R C Woledge
January 1982, The American journal of physiology,
J A Rall, and R C Woledge
January 2008, Drug discovery today. Disease models,
J A Rall, and R C Woledge
December 1950, Nature,
J A Rall, and R C Woledge
October 2017, Journal of neuroengineering and rehabilitation,
J A Rall, and R C Woledge
January 1987, Progress in clinical and biological research,
J A Rall, and R C Woledge
January 1992, Japanese journal of pharmacology,
J A Rall, and R C Woledge
January 2017, The journal of physiological sciences : JPS,
J A Rall, and R C Woledge
August 1990, The Journal of physiology,
Copied contents to your clipboard!